THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

EFFECTS OF VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY ON UNSTEADY MHD FLOW OF NON-NEWTONIAN FLUID OVER A STRETCHING POROUS SHEET

ABSTRACT
The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal conductivity in a porous medium by the influence of an external transverse magnetic field have been obtained and studied numerically. By using similarity analysis the governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are solved numerically. Numerical results were presented for velocity and temperature profiles for different parameters of the problem as power law parameter, unsteadiness parameter, radiation parameter, magnetic field parameter, porous medium parameter, temperature buoyancy parameter, Prandtl parameter, modified Eckert parameter, Joule heating parameter , heat source/sink parameter and others. A comparison with previously published work has been carried out and the results are found to be in good agreement. Also the effects of the pertinent parameters on the skin friction and the rate of heat transfer are obtained and discussed numerically and illustrated graphically.
KEYWORDS
PAPER SUBMITTED: 2011-05-29
PAPER REVISED: 2012-01-17
PAPER ACCEPTED: 2012-02-08
DOI REFERENCE: https://doi.org/10.2298/TSCI110529025R
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2013, VOLUME 17, ISSUE 4, PAGES [1035 - 1047]
REFERENCES
  1. Sakiadis B.C., Boundary layer behavior on continuous solid surfaces, AIChE J. 7 (1961), pp. 26-28.
  2. Crane L.J., Flow past a stretching plate, ZAMP 21 (1970), pp. 645-647.
  3. Afzal N., Varshney I.S., The cooing of a low heat resistance stretching sheet moving through a fluid,Warme Stoffubertrag. 14 (1980), pp. 289-293.
  4. Banks W.H.H., Similarity solutions of the boundary layer equations for a stretching wall, J. Mec. Theor. Appl. 2 (1983), pp. 375-392.
  5. Chen C.K., Char M.I., Heat transfer of a continuous stretching surface with suction or blowing, J. Math. Anal. Appl. 135 (1988), pp. 568-580.
  6. Gupta P.S., Gupta A.S., Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng. 55 (1977), pp. 744-746.
  7. Vleggaar J., Laminar boundary layer behaviour on continuous accelerating surfaces, Chem. Eng. Sci. 32 (1977), pp. 1517-1525.
  8. Grubka L.J., Bobba K.M., Heat transfer characteristics of a continuous stretching surface with variable temperature, ASME J. Heat Transfer 107 (1985), pp. 248-250.
  9. Sarpakaya T., Flow on non-Newtonian fluids in a magnetic field, AIChE J. 7 (1961), pp. 324-328.
  10. Andersson H.I., MHD flow of a visco-elastic fluid past a stretching surface, Acta Mech. 95 (1992), pp. 227-230.
  11. Sam Lawrence P., Nageswara Rao B., Heat transfer in the MHD flow of a viscoelastic fluid over a stretching sheet, ZAMM 77 (1997), pp. 317-319.
  12. Abel M.S., Joshi A., Sonth R.M., Heat transfer in MHD visco-elastic fluid flow over a stretching surface, ZAMM 81 (2001), pp. 691-698.
  13. Chowdhury M.K., Islam M.N., MHD free convection flow of visco-elastic fluid past an infinite vertical porous plate, Heat Mass Transfer 36 (2000), pp. 439-447.
  14. Khan S.K., Abel M.S., Sonth M.R., Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation energy and stress work, Heat Mass Transfer 40 (2003), pp. 47-57.
  15. Abel M.S., Mahesha N., Heat transfer in MHD visco-elastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Model. 32 (2008), pp.1965-1983.
  16. Char M.I., Heat and mass transfer in a hydromagnetic flow of the visco-elastic fluid over a stretching sheet, J. Math. Anal. Appl. 186 (1994), pp. 674-689.
  17. Schowalter W.R., The application of boundary layer theory to power law pseudo plastic fluids: similar solutions, AIChE J. 6 (1960), pp. 24-28.
  18. Acrious A., Shah M.J., Peterson E.E., Momentum and heat transfer in laminar boundary layer flow on non-Newtonian fluids past external surfaces, AIChE J. 6 (1960), pp. 312- 316.
  19. Lee S.Y., Ames W.F., Similar solutions for non-Newtonian fluids, AIChE J. 12 (1966), pp. 700-708.
  20. Andersson H.I., Bech K.H., Dandapat B.S., Magnetohydrodynamic flow of a power law fluid over a stretching sheet, Int. J. Nonlinear Mech. 72 (1992),4, pp. 929-936.
  21. Howell T.G., Jeng D.R., Dewitt K.J., Momentum and heat transfer on a continuous moving surface in a power law fluid, Int. J. Heat Mass Transfer 40 (1997), pp. 1853- 1861.
  22. Hassanien I.A., Abdullah A.A., Gorla R.S.R., Flow and heat transfer in a power law fluid over a non-isothermal stretching sheet, Math. Comput. Model. 28 (1998), pp. 105- 116.
  23. Abel M.S., Mahesha N., Effects of thermal buoyancy and variable thermal conductivity in a power law fluid past a vertical stretching sheet in the presence of non uniform heat source, Int. J. Nonlinear Mech. 44 (2009), pp. 1-12.
  24. Vajraveleu K., Flow and heat transfer in a saturated porous medium over a stretching surface, ZAMM 74 (1994), pp. 605-614.
  25. Vajravelu K., Nayfeh J., Convective heat transfer at a stretching sheet, Acta Mech. 96 (1993), pp. 47-54.
  26. Chaim T.C., Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet, Acta Mech. 129 (1998), pp. 63-72.
  27. Chiam T.C., Heat transfer with variable thermal conductivity in a stagnation point flow towards a stretching sheet, Int. Commun. Heat Mass Transfer 23 (1996), pp. 239-248.
  28. Datti P.S., Prasad K.V., Abel M.S., A. Joshi, MHD visco-elastic fluid flow over a non- isothermal stretching sheet, Int. J. Eng. Sci. 42 (2004), pp. 935-946.
  29. Prasad K.V., Abel M.S., Khan S.K., Momentum and heat transfer in visco-elastic fluid flow in a porous medium over a non-isothermal stretching sheet, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000), pp. 786-802.
  30. Abel M.S., Prasad K.V., Ali M., Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface, Int. J. Therm. Sci. 44 (2005), pp. 465-476.
  31. Savvas T.A., Markatos N.C., Papaspyrides C.D., On the flow of non-Newtonian polymer solutions, Appl.Math. Model. 18 (1994), pp. 14-21.
  32. Prasad K.V., Vajravelu K., Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet, Int. J. Heat and Mass Transfer 52 (2009), pp. 4956- 4965.
  33. Andersson H.I., Aarseth J.B., Braud N., Dandapat B.S., Flow of a power-law fluid film on an unsteady stretching surface, J. Non-Newtonian Fluid Mech. 62 (1996), pp. 1-8.
  34. Sparrow E. M., Cess R. D., Radiation Heat Transfer, Brooks/Cole, Belmont, California, 1970.
  35. El-Arabawy H. A. M., Effect of suction/injection on the flow of a micropolar fluid past a continuously moving plate in the presence of radiation, Int. J. Heat Mass Transfer, 46 (2003), pp. 1471-1477.

© 2020 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence