THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

MODELS FOR OPTIMUM THERMO-ECOLOGICAL CRITERIA OF ACTUAL THERMAL CYCLES

ABSTRACT
In this study, the ecological optimization point of irreversible thermal cycles (refrigerator, heat pump and power cycles) was investigated. The importance of ecological optimization is to propose a way to use fuels and energy source more efficiently because of an increasing energy need and environmental pollution. It provides this by maximizing obtained (or minimizing supplied) work and minimizing entropy generation for irreversible (actual) thermal cycles. In this research, ecological optimization was defined for all basic irreversible thermal cycles, by using the first and second laws of thermodynamics. Finally, the ecological optimization was defined in thermodynamic cycles and results were given to show the effects of the cycles’ ecological optimization point, efficiency, COP and power output (or input), and exergy destruction.
KEYWORDS
PAPER SUBMITTED: 2011-09-18
PAPER REVISED: 2012-05-12
PAPER ACCEPTED: 2012-05-26
DOI REFERENCE: https://doi.org/10.2298/TSCI110918095A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2013, VOLUME 17, ISSUE 3, PAGES [915 - 930]
REFERENCES
  1. Angulo-Brown F., An ecological optimization criterion for finite-time heat engines, Journal of Applied Physic, 69 (1991), 11, pp.7465-7469.
  2. Yan Z., Comment on Ecological optimization criterion for finite-time heat-engines, Journal of Applied Physic, 73 (1993), 7, pp. 3583.
  3. Chen L., Zhang W. and Sun F., Power, efficiency, entropy - generation rate and ecological optimization for a class of generalized irreversible universal heat - engine cycles, Applied Energy 84(2007), 5, pp.512 - 25.
  4. Chen L., Zhou J., Sun F. and Wu C. , Ecological optimization for generalized irreversible Carnot engines, Applied Energy 77 (2004), 3, pp. 327 - 38.
  5. Chen L., Xiaoqin Z. and Sun F., Wu C., Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump, Applied Energy 84 (2007), 3, pp. 78 - 88.
  6. Huang Y., Sun D. and Kang Y., Performance optimization for an irreversible four-temperature-level absorption heat pump, International Journal of Thermal Science 4 (2008), 4, pp. 7479 - 85.
  7. Yan Z. and Lin G., Ecological optimization criterion for an irreversible three-heat-source refrigerator, Applied Energy 66 (2000), 3, pp. 213 - 24.
  8. Cheng C. and Chen C., The ecological optimization of an irreversible Carnot heat-engine, J. Phys. D: Appl. Phys., 30(1997), 11,pp. 1602-09.
  9. Xia D., Chen L. and Sun F., Universal ecological performance for endoreversible heat engine cycles, Int. J. Ambient Energy, 27(2001),1,pp. 15-20.
  10. Zhang W., Chen L., Sun F. and Wu C., Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle, Int. J. Ambient Energy,28(2007), 1, pp. 51-56.
  11. Chen L., Zhu X., Sun F. and Wu C., Exergy-based ecological optimization of linear phenomenological heat transfer law irreversible Carnot engines, Applied Energy, 83(2006), 6, pp. 573 - 82.
  12. Zhu X., Chen L., Sun F. and Wu C., The ecological optimization of a generalized irreversible Carnot engine with a generalized heat-transfer law, Int. J. Ambient Energy, 24(2003),4, pp. 189 - 94.
  13. Zhu X., Chen L., Sun F. and Wu C., Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot engine, Open Sys. Inf. Dyn., 12(2005), 3, pp. 249 - 60.
  14. Li J., Chen L. and Sun F., Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law, Int. J. Sustainable Energy, 30(2011), 1, pp. 55 - 64.
  15. Li J., Chen L. and Sun F., Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law, Int. J. Energy and Environment, 2(2011), 1, pp. 57 - 70.
  16. Tu Y., Chen L., Sun F. and Wu C., Exergy-based ecological optimization for an endoreversible Brayton refrigeration cycle, Int. J. Exergy, 3(2006), 2, pp. 191 - 201.
  17. Chen L., Zhu X., Sun F. and Wu C., Ecological optimization for generalized irreversible Carnot refrigerators, J. Phys. D: Appl. Phys., 38(2005), 1, pp. 113 - 18.
  18. Zhu X., Chen L., Sun F. and Wu C., Exergy based ecological optimization for a generalized irreversible Carnot refrigerator, J. Energy Institute, 79(2006), 1, pp. 42 - 46.
  19. Chen L., Zhu X., Sun F. and Wu C., Ecological optimization of a generalized irreversible Carnot refrigerator for a generalized heat transfer law, Int. J. Ambient Energy, 28(2007),4, pp. 213 - 19.
  20. Li J., Chen L., Sun F. and Wu C., Ecological performance of an endoreversible Carnot refrigerator with complex heat transfer law, Int. J. Ambient Energy, 32(2011), 1, pp. 31 - 36.
  21. Chen L., Li J. and Sun F., Ecological optimization of a generalized irreversible Carnot refrigerator in case of , Int. J. Sustainable Energy, 31(2012), 1, pp. 59 - 72.
  22. Tyagi S. K., Kaushik S. C. and Salohtra R., Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps, J. Phys. D: Appl. Phys., 35(2002), 16, pp. 2058 - 65.
  23. Zhu X., Chen L., Sun F. and Wu C., Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot heat pump, Int. J. Exergy, 2(2005), 4, pp. 423 - 36.
  24. Zhu X., Chen L., Sun F. and Wu C., The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law, J. Energy Institute, 78(2005), 1, pp. 5- 10.
  25. Chen L., Li J., Sun F. and Wu C., Effect of a complex generalized heat transfer law on ecological performance of an endoreversible Carnot heat pump, Int. J. Ambient Energy, 30(2009), 2, pp. 102 - 08.
  26. Li J, Chen L and Sun F., Optimal ecological performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law, Termotehnica (Thermal Engineering), 13(2009), 2, pp. 61 - 8.
  27. Liu X., Chen L., Wu F. and Sun F., Ecological optimization of an irreversible harmonic oscillators Carnot heat engine, Science in China Series G: Physics, Mechanics & Astronomy, 52(2009), 12, pp. 1976 -88.
  28. Wang W., Chen L., Sun F. and Wu C., Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimization of an irreversible closed intercooled regenerated Brayton cycle, Journal of Energy Institute, 79(2006), 2, pp. 116 - 19.
  29. Wang W., Chen L. and Sun F., Ecological optimization of an irreversible ICR gas turbine cycle, Int. J. Exergy, 9(2011), 1, pp. 66-79.
  30. Ust Y., Sahin B. and Sogut O. S., Performance analysis and optimization of an irreversible dual - cycle based on an ecological coefficient of performance criterion, Applied energy 82 (2005), 1, pp. 23 - 39.
  31. Ust Y. and Sahim B., Performance optimization of irreversible refrigerators based on a new thermo - ecological criterion, International Journal of Refrigeration 30 (2007), 3, pp. 527 - 34.
  32. Ust Y., Sahin B., Kodal A. and Akcay I. H., Ecological coefficient of performance analysis and optimization of an irreversible regenerative - Brayton heat engine, Applied Energy 83 (2006), 6, pp. 558 - 72.
  33. Tyagi S.K., Kaushik S.C. and Salhotra R., Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines, J. Phys. D: Appl. Phys. 35 (2002), 20, pp. 2668-75
  34. Sahin B., Ozsoysal A. O. and Sogut O.S., A comparative performance analysis of endoreversible dual cycle under maximum ecological function and maximum power conditions, Exergy, an International Journal 2 (2002), 3, pp. 173 - 85
  35. Zhu X., Chen L., Sun F. and Wu C., Exergy - based ecological optimization for a generalized Carnot refrigerator, Journal of Energy Institute 79 (2006 ), 1, pp. 42 - 6.
  36. Chen L., Li J., and Sun F., Optimal temperatures and maximum power output of a complex system wıth linear phenomenological heat transfer law, Thermal Science,. 13 (2009), 4, pp. 33 - 40.
  37. Ge Y., Li J., and Sun F., Optimal paths of piıston motion of irreversible diesel cycle for miınimum entropy generation, Thermal Science, 15(2011), 4, pp. 975 - 93.
  38. Wu F., Yang Z., Chen L., Liu X. and Wu S., Work output and effıcıency of a reversıble quantum Otto cycle, Thermal Scıence, 14(2010), 4, pp. 879 - 86
  39. Ge Y., Li J., and Sun F., Finite time thermodynamic modeling and analysis foran irreversible Atkinson cycle, Thermal Science, 14(2010), 4, pp. 887-96
  40. Chen J., The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D: Appl. Phys 27 (1994), 6, pp. 1144 - 9.
  41. Aragon - Gonzales G., Canales - Palma A., Leaon - Galicia A. and Musharrafie - Martinez M., A criterion to maximize the irreversible efficiency in heat engines, J. Phys. D: Appl. Phys 36 (2003), 3, pp.280 - 7.
  42. Wu C., Chen L. and Sun F., Ecological optimization performance of an irreversible quantum SI engine powering with an ideal Fermi gas, Open Sys. & İnformation Dynamic 13 (2006), 1, pp. 55 - 66.
  43. Baierlein R., Thermal Physics, ISBN 0-521-65838-1, Cambridge, 1999.
  44. Sogut S. S., Ust Y. and Sahin B., The effects of intercooling and regeneration on thermo - ecological performance analysis of an irreversible - closed Brayton heat engine with variable - temperature thermal reservoirs, J. Phys. D: Appl. Phys. 39 (2006), 21, pp. 4713-21.
  45. Wu C and Kiang R L,Work and power optimization of a finite-time Brayton cycle, İnt. J. Ambient Energy 11 (1990), 3, pp. 129-36.
  46. Wu C. and Kiang R. L., Power performance of a nonisentropic Brayton cycle, ASME J. Eng. Gas Turbines Power 113 (1991), 4, pp. 501-4.
  47. Sahin B., Kodal A. and Yavuz H., Efficiency of a Joule-Brayton engine at maximum power density. J. Phys. D: Appl. Phys. 28 (1995), 7, pp. 1309-13.
  48. Sahin B., Kodal A, Yilmaz T. and Yavuz H., Maximum power density analysis of an irreversible Joule-Brayton engine. J. Phys. D: Appl. Phys. 29 (1996), 5, pp. 1162-7.
  49. Sahin B., Kodal A. and Kaya S. S., A comparative performance analysis of irreversible regenerative reheating Joule-Brayton engines under maximum power density and maximum power conditions, J. Phys. D: Appl. Phys. 31 (1998), 17, pp. 2125-31.
  50. Cheng C. Y. and Chen C. K., Power optimization of an irreversible Brayton heat engine, Energy Sources 1 (1997), 5, 461-74.
  51. Cheng C. Y. and Chen C. K., Power optimization of an endoreversible regenerative Brayton cycle, Energy 2 (1996), 4, pp. 241-7.
  52. Chen L., Sun F., Wu C. and Kiang R. L., Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities, Energy Convers. Manage. 3 (1997), 9, pp. 871-7.
  53. Roco J M. M., Velasco S., Medina A. and Hernandez A. C., Optimum performance of a regenerative Brayton thermal cycle, J. Appl. Phys. 8 (1997), 6, pp. 2735-41.
  54. Chen L., Zheng J. L., Sun F. and Wu C., Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle, J. Phys. D: Appl. Phys. 3 (2001), 6, pp. 1727-39.
  55. Chen L., Zheng J. L., Sun F. and Wu C., Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions, Energy Conv. Managt. 4 (2002), 1, pp. 33-43.
  56. Blank D. A. and Wu C., Power limit of an endoreversible Ericsson cycle with regeneration, Energy Conv. Mangt. 37 (1996), 1, pp. 59 - 66.
  57. Chen J., Yan Z., Chen L. and Anderson B., Efficiency bound of a solar-driven Stirling heat engine system, Int. J. Energy Res. 22 (1998), 9, pp.805 - 12.
  58. Blank D. A. and Wu. C. 1996 Finite time power limit for solar-radiant Ericsson engines for space applications Appl. Thermal Eng. 18 1347 -57
  59. Erbay B. and Yavuz H., The maximum cooling density of a realistic Stirling refrigerator, J. Phys. D: Appl. Phys. 31 (1998), 3, pp. 291 - 93.
  60. Erbay B. and Yavuz H., Analysis of Stirling heat engine at maximum power conditions, Energy 22 (1997), 7, pp. 645 - 50.
  61. Erbay L. B. and Yavuz H., Analysis of an irreversible Ericsson engine with a realistic regenerator, Applied Energy 62 (1999), 3, pp.155 - 67.
  62. Erbay L. B. and Yavuz H., Optimization of the irreversible Stirling heat engine, Int. J. Energy Res. 23 (1999), 10, pp. 863 - 73.

© 2020 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence