International Scientific Journal


The full thermodynamic study of the absorption refrigeration units requires the knowledge of the thermodynamic properties of the used mixture. The present work deals with the mathematical modeling of the thermodynamic properties of ammonia-water mixtures using various models. The presented model covers high vapor-liquid equilibrium pressures up to 110 [bar] and temperatures from 230 to 600 [K]. Furthermore, the calculation of the thermodynamic properties of the ammonia-water mixtures and their pure components was carried out. The obtained results were compared with results given in the literature. This shows a good concordance.
PAPER REVISED: 2011-06-14
PAPER ACCEPTED: 2011-08-18
CITATION EXPORT: view in browser or download as text file
  1. A. Sathyabhama and t. P. Ashok babu, Thermodynamic simulation of ammonia-water absorption refrigeration system, Thermal Science, 12 (2008), 3, pp. 45-53
  2. PIERRE Rapin, Form of the cold, 13 2nd Edition, DUNOD, 2006
  3. 10
  4. Eva Thorin, Power cycles with ammonia-water mixtures as working fluid, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000
  5. D. Peng, D. Robinson, Two and Three Phase Equilibrium Calculations for Coal Gasification and Related Processes, Thermodynamics of Aqueous Systems with Industrial Applications, ACS Symposium Series, No. 133, American Chemical Society, Washington, DC, 1980
  6. Skogestad, S., Experience in Norsk-Hydro with Cubic Equations of State, Fluid Phase Equilibria, 13 (1983), pp.179-188
  7. H. Renon, J.L Guillevic, D Richon, J Boston, H Britt, A cubic equation of state representation of ammonia-water vapor-liquid equilibrium data, International Journal of Refrigeration, 9 (1986), 2, pp. 70-73
  8. Iseli M., Experimentelle und Thermodynamische Untersuchung des Siedegleichgewichtes des Systems NH3-H2O, bei Hohen Drücken, Dissertation No. 7743,Eidgenössischen Technischen Hochschule, Zürich, 1985
  9. R. Stryjek and J. H. Vera, An improved peng—Robinson equation of state for pure compounds and mixtures, Can. J. Chem. Eng., 64 (1986), pp.323-333
  10. Sturnfield Ballard E., Matherne J. L., Modeling of a Complex Polar System with a Modified Soave-Redlich-Kwong Equation, Chemical Engineering Communication, 84 (1989), pp. 81-95
  11. Huang H., A New Mixing Rule for the Patel-Teja Equation of State. Study of Vapor-Liquid Equilibria, Fluid Phase Equilibria, 58 (1990), 1-2, pp. 93-115
  12. Smolen T. M., Manley D. B., and Poling B. E., Vapor-liquid equilibrium data for the NH3-H2O system and its description with a modified equation of state, J. Chem. Eng. Data, 36 (1991), pp. 202-208
  13. Moshfeghian M., Shariat A., Maddox R. N., Prediction of Refrigerant Thermodynamic Properties by Equations of State: Vapor Liquid Equilibrium Behavior of Binary Mixtures, Fluid Phase Equilibria, 80 (1992), pp. 33-44
  14. Peters R., Keller J. U., Ein Assoziationsmodell zur Berechnung von Phasengleich-gewichtszuständen im Stoffsystem Ammoniak-Wasser, DKVTagungsber., 2 (1993), pp. 183-96
  15. Zhao E., Sugie H., Lu B. C.-Y., Calculation of Vapor-Liquid Equilibria and Saturated Liquid Volumes for Water-Ammonia Mixtures, Chemical Engineering Communication, 129 (1994), pp. 99-108
  16. Vidal J., Equations of State-Reworking the Old Forms, Fluid Phase Equilibria, 13(1983), pp. 15-33
  17. Gillespie P. C., Wilding W. V., Wilson G. M., Vapor-Liquid Equilibrium Measurements on the Ammonia-Water System from 313 K to 589 K, AICHE Symposium Series, 83(1987),254, pp. 97-127
  18. Thomsen K., Rasmussen P., Thermodynamic Model for the Ammonia-Water System, 13th International Conference on the Properties of Water and Steam, Toronto, Canada, 1999
  19. Rizvi, S. S. H., Measurement and Correlation of Ammonia-Water Equilibrium Data, Ph. D. Thesis, Dissertation, University of Calgary, 1985
  20. Tochigi K., Kurihara K., Satou T., Kojimi K., Prediction of Phase Equilibria for the Systems Containing Ammonia Using PRASOG, Journal of Supercritical Fluids, 13 (1998), pp. 61-67
  21. Enick, R.M., Donahey, G.P., Holsinger, Modeling the high-pressure ammonia-water system with WATAM and the Peng-Robinson Equation of state for Kalina cycle studies, Ind. Eng.
  22. 11
  23. Chem. Res., 37 (1998), pp. 1644-1650
  24. Enick R. M., Mcllvried H. G., Gale T. K., Klara J. M., The Modeling of LEBS Kalina Power Cycles, Proceedings of Joint Power Generation Conference, ASME, 1997, Vol. 2, pp. 55-67
  25. Duan Z., Møller N., Weare J. H., Equation of State for the NH3-H2O System, Journal of Solution Chemistry, 25 (1996), 1, pp. 43-50
  26. Harms-Watzenberg F., MesSUNg und Korrelation der Thermodynamischen Eigenschaften von Wasser-Ammoniak-Gemischen, VDI Fortschritt-Berichte, Series 3: Verfahrenstechnik, No. 380, VDI-Verlag, 1995
  27. Edwards T. J., Newman J., Prausnitz J. M., Thermodynamics of Vapor-Liquid Equilibria for the Ammonia-Water System, Industrial & Engineering Chemistry Fundamentals, 17 (1978), 4, pp. 264-269
  28. Schulz, S. C. G., Equations of State for the System Ammonia-Water for Use with Computers, Proceedings of the 13th International Congress of Refrigeration, 1973, Vol. 2, pp. 431-436
  29. Kouremenos D. A., Rogdakis E. D., The Temperature-Entropy (or Enthalpy) and the Enthalpy-Entropy (Mollier) Diagram of the Kalina Cycle, Fundamentals of Thermodynamics and Exergy Analysis, 19(1990), ASME, pp. 13-19
  30. Ziegler, B., Trepp, C, Equation of state for ammonia-water mixtures, International Journal of Refrigeration, 7 (1984), 2 March, pp. 101-106
  31. Ibrahim, O.M., Klein, S.A, Thermodynamic properties of ammonia-water mixtures, ASHRAE Trans. Symposia, 21 (1993), 2, pp. 1495-1502
  32. Xu, F., Yogi Goswami, D, Thermodynamic properties of ammonia-water mixtures for power-cycle applications, Energy, 24 (1999), 6, pp. 525-536
  33. Stecco S.S. and U. Desideri, Thermodynamic Analysis of the Kalina Cycles: Comparisons, Problems, Perspectives, ASME Paper, American Society of Mechanical Engineers, 89 (1989), GT, pp. 149
  34. Nag, P.K., Gupta, Exergy analysis of the Kalina cycle, Applied Thermal Engineering, 18 (1997), 6, pp. 427-439
  35. El-Sayed, Y.M., Tribus, Thermodynamic properties of water-ammonia mixtures theoretical implementation for use in power cycles analysis, ASME Paper AES, American Society of Mechanical Engineers, 1 (1985), pp. 89-95
  36. Kalina A., Tribus M., El-Sayed Y., A Theoretical Approach to the Thermophysical Properties of Two-Miscible-Component Mixtures For the Purpose of Power-Cycle Analysis, ASME Paper, American Society of Mechanical Engineers, 86 (1986), WA/HT, pp. 54
  37. Weber, L.A, Estimating the virial coefficients of the ammonia-water mixture, Fluid Phase Equilibria, 162 (1999), 1-2, pp. 31-49
  38. Y. M. Park, A Generalized Equation of State Approach to the Thermodynamic Properties of Ammonia-Water Mixtures with Applications, Ph. D. Thesis, University of Michigan, UMI, 1988
  39. Ikegami Y., Nishida T., Uto M., Uehara H., Thermophysical Properties of Ammonia/Water by the BWR Equation of State, The Thirteenth Japan Symposium on Thermophysical Properties, 1992, pp. 213-216
  40. Friend D. G, Olson A. L, Nowarski A., Standard Thermophysical Properties of the Ammonia-Water Binary Fluid, Proceedings of the 12th International Conference on the Properties of
  41. 12
  42. Water and Steam, 1994, Orlando, Florida
  43. Nowarski A., Friend D. G., Application of the Extended Corresponding State Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface, International Journal of Thermophysics, 19 (1998), 4, pp. 1133-1142
  44. Abovsky V., Thermodynamics of Ammonia-Water Mixture, Fluid Phase Equilibria, 116 (1996), pp. 170-176
  45. Rainwater J. C., Tillner-Roth R., Critical Region Vapor-Liquid Equilibrium Model of Ammonia-Water, 13th International Conference on the Properties of Water and Steam, 1999, Toronto, Canada
  46. Tillner-Roth R., Friend D. G., A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water+Ammonia}, Journal of Physical and Chemical Reference Data, 27 (1998), 1b, pp. 63-69
  47. Paték J., Klomfar J., Simple Functions for Fast Calculations of Selected Thermodynamic Properties of the Ammonia-Water System, International Journal of Refrigeration, 18 (1995), 4, pp. 228-234
  48. Jain P. C., Gable G. K., Equilibrium Property Data Equations for Aqua-Ammonia Mixtures, ASHRAE Transactions, 77 (1971), 1, pp.149-151
  49. Rukes, B., Dooley, R.B, Guideline on the IAPWS formulation 2001 for the thermodynamic properties of ammonia-water mixtures, IAPWS (The International Association for the Properties of Water and Steam), 2001, Maryland,USA
  50. Jordan, D.P, Aqua-ammonia properties, Department of Mechanical Engineering, 1997, Texas Tech University, Lubbock-Texas, pp. 19
  51. M. Barhoumi, A. Snoussi, N. Ben Ezzine, K. Mejbri, A. Bellagi, Modelling of the thermodnyamic properties of the ammonia-water mixture, International Journal of Refrigeration, 27 (2004), pp. 271-283
  52. Kh. Mejbri, A. Bellagi, Modelling of thermodynamic properties of the water-ammonia mixture by three different approaches, International Journal of Refrigeration, 29 (2006), pp. 211-218
  53. Amer. H. T., Michel. F, Olivier. L, Thermodynamic properties of ammonia-water mixtures, International Congress of Refrigeration, 2003, Washington, ICR , pp. 0113 -2003
  54. Dae.Wen. SUN, Comparison of the performance of NH3-H2O, NH3-LiNO3 and NH3-SCN absorption refrigeration systems, Energy Conversion, 39 (1998), 5/6, pp. 357-368
  55. ***, Thermodynamic and physical properties of NH3-H20, (IIR) International Institute of Refrigeration, (1994), pp. 88, France
  56. KUZMAN. Ražnjevic, Thermodynamic tables and charts, Edition EYROLES,1970
  57. L. Hear et al., Thermodynamic Properties of Ammonia, Journal of Physical Chemistry, 7 (1978), pp. 635-792

© 2020 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence