International Scientific Journal

Authors of this Paper

External Links


Statistical analysis of the velocity fluctuations is performed for the near-wall region of wall-bounded flows. By demanding that the small-scale part of the fluctuations satisfies constraints imposed by local ax symmetry it was found that the small scales must be entirely suppressed in the near-wall region. This major conclusion is well supported by all available data from direct numerical simulations.
PAPER ACCEPTED: 2005-04-06
CITATION EXPORT: view in browser or download as text file
  1. Antonia, R.A., Teitel, M., Kim, J. and Browne, L.W.B., 1992, Low-Reynolds-number effects in a fully developed turbulent channel flow, J.Fluid Mech., 236, 579-605
  2. Chou, P.Y., 1945, On the velocity correlation and the solution of the equation of turbulent fluctuation, Quart. Appl. Math., 3, 38-54
  3. Dimitropulos, C.R., Sureshkumar, R. and Beris A.N., 1998, Direct numerical simulation of viscoelastic turbulent channel exhibiting drag reduction: effect of the variation of rheological parameters, J.Non-Newtonian Fluid Mech., 79, 443-468
  4. Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. and Nieuwstadt, F.T.M., 1994, Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment, J. Fluid Mech., 268, 175-209
  5. Falco, R.E., 1978, The role of outer flow coherent motions in the production of turbulence near a wall., In Coherent Structure of Turbulent Boundary Layer, (ed. C.R. Smith and D.E. Abbott), pp.448-461 AFOSR/Lehigh University
  6. George, W.K. and Hussein, H.J., 1991, Locally axisymmetric turbulence., J. Fluid Mech., 233, 1-23
  7. Gilbert, N. and Kleiser, L., 1991, Turbulence model testing with the aid of direct numerical simulation results., Proc. Eighth Symp. on Turbulent Shear Flows, Munich, 26.1.1-26.1.6
  8. Horiuti, K., 1992, Establishment of the direct numerical simulation data base of turbulent transport phenomena., Ministry of Education, Science and Culture Japan, Co-operative Research No. 012302043,
  9. Jovanović, Ye, Q.-Y. and Durst, F., 1995, Statistical interpretation of the turbulent dissipation rate in wall-bounded flows., J.Fluid Mech., 293, 321-347
  10. Jovanović, J., Hillerbrand, R. and Pashtrapanska, M., 2001, Mit statistischer DNS-Datenanalyse der Enstehung von Turbulenz auf der Spur., KONWIHR Quartl, 31, 6-8
  11. Jovanović, J., Otić, I. and Bradshaw, P., 2003, On the anisotropy of axisymmetric strained turbulence in the dissipation range., J. Fluids Eng., 125, 401-413
  12. Jovanović, J., 2004, The Statistical Dynamics of Turbulence, Springer-Verlag, Berlin
  13. Jovanović and Pashtrapanska, M., 2004, On the criterion for the determination transition onset and breakdown to turbulence in wall-bounded flows., J. Fluids Eng.,128, 1-8
  14. Kline, S.J., Reynolds, W.C., Schraub, F.A. and Runstadlet, W.P, 1967, The structure of turbulent boundary layres., J. Fluid Mech., 30, 741-773
  15. Kim, H.T., Kline, S.J. and Reynolds, W.C., 1971, The production of turbulence near smooth wall in a turbulent boundary layer., J. Fluid Mech., 50, 133-160
  16. Kim, J., Moin, P. and Moser, R., 1987. Turbulence statistics in a fully deve-loped channel flow at low Reynolds numbers., J.Fluid Mech., 177, 133-166
  17. Kolovandin, B.A. and Vatutin, I.A., 1969, On statistical theory of non-uniform turbulence., Int. Seminar on Heat and Mass Transfer, Herceg-Novi, Yugoslavia
  18. Kuroda, A., Kasagi, N. and Hirata, M., 1993, Direct numerical simulation of the turbulent plane Couette-Poiseulle flows: effect of mean shear on the near wall turbulence structures., Proc. Ninth Symp. on Turbulent Shear Flows, Kyoto, 8.4.1-8.4.6,
  19. Lammers, P., Jovanović, J. and Durst, F., 2004, Numerical experiment on wall turbulence at very low Reynolds number., Phys. Fluids, submitted
  20. Laufer, J., 1975, New trends in experimental turbulence research., Ann. Rev. Fluid Mech., 7, 307-326
  21. Laufer, J., 1982, Flow instability and turbulence., In Structure of Turbulence in Heat and Mass Transfer, (ed. Z. Zarić), Hemisphere
  22. Lumley, J.L. and Newman, G., 1977, The return to isotropy of homogeneous turbulence., J. Fluid Mech., 82, 161-178
  23. Lumley, J.L., 1978, Computational modeling of turbulent flows, Adv. Appl. Mech., 18, 123-176
  24. Monin, A.S. and Yaglom, A.M., 1987, The Statistical Fluid Mechanics., Vol. 1, The MIT Press, Cambridge, Massachusetts
  25. Moser, R.D., Kim, J. and Mansour, N.N., 1999, Diret numerical simulation of turbulent channel flow up to Re_ au=590., Phys. Fluids, 11, 943-945
  26. Schenck, T. and Jovanović, J., 2002, Measurements of the instantaneous velocity gradients in plane and axisymmetric wake flows., J.Fluids Eng., 124, 143-153
  27. Spalart, P.R., 1986, Numerical study of sink-flow boundary layers., J. Fluid Mech., 172, 307-328
  28. Spalart, P.R., 1988, Direct simulation of a turbulent boundary layer up to R_Theta,=1410, J. Fluid Mech., 187, 61-98
  29. Wang, Z.Y. and Jovanović, J., 1993, Drag characteristics of extra-thin-fin riblets in an air conduit., J. Fluids Eng., 155, 222-226
  30. Warholic, M.D., Massah, H. and Hanratty, T.J., 1999, Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing., Exp. Fluids, 27, 461-472

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence