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Statistical analysis of the velocity fluctuations is performed for the
near-wall region of wall-bounded flows. By demanding that the small-scale
part of the fluctuations satisfies constraints imposed by local axisymmetry,
it was found that the small scales must be entirely suppressed in the
near-wall region. This major conclusion is well supported by all available
data from direct numerical simulations.
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Introduction

The question of how wall-bounded flows can be rationally controlled with rea-
sonable cost is of fundamental and practical importance. This outstanding question has
engineering relevance since it is directly related to the viscous drag and heat transfer pro-
cesses. Substantial work has been done along these lines, but only partial success has
been achieved. The purpose of this paper is to shed some light on the subject by consider-
ing the velocity fluctuations in the near-wall region which possesses specific invariance
in the dissipation range. Constraints that lead to effective damping of the velocity
fluctuations close to the wall have been examined.

Before we proceed with formal treatment of the fundamental issue related to
wall turbulence, it is useful to analyse its evolution by looking into the anisotropy of the
Reynolds stresses utilizing the databases of direct numerical simulations at low Reynolds
numbers. The level of anisotropy of turbulence can be quantified, following analysis of
Lumley and Newman [1], by introducing the anisotropy tensor:

uu; |
q
and its scalar invariants:
IIa = a;a;; (2)
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A plot of II,, versus III,, for axisymmetric turbulence, namely:
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and two-component turbulence, namely:

2
I, =5 +2uI, (5)

defines the anisotropy invariant map according to Lumley [2]. This plot, shown in fig. 1
bounds all physically realizable turbulence. Two curves shown in this figure represent
axisymmetric turbulence. The right curve corresponds to turbulence strained by
axisymmetric expansion and the left curve corresponds to straining by axisymmetric
contraction. Along the straight line resides two-component turbulence. Such turbulence
exists in the region of viscous sublayer of wall-bounded turbulent flows. The limiting
states of the turbulence are located at the corner points on the right- and left-hand sides of
the anisotropy invariant map and correspond to one-component turbulence and isotropic
two-component turbulence, respectively.
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Figure 1. Anisotropy invariant map and the limiting
values of invariants for the different states of the
turbulence
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Note that relations (4) and (5) for the invariants of @;also hold for the invariants
of the anisotropy e;; in the stress dissipation &; =vOu,; /0x; Ou;/0x;:

_G 1
I, =e;e; ey )

Therefore, in axisymmetric turbulence the invariants 11, and 111, are related by:

23
3(3
I, ==| =[I, 9
; 2( n ] ©)
while in two-component turbulence,
2
II, =5 + 2111, (10)
The invariants of e;; coincide with those corresponding to a;:
I, =11, (11)
11, =111, (12)

in the limiting states of the turbulence owing to [3]:

€ = a; (13)

Looking at the two vertices of the anisotropy invariant map shown in fig. 1 and
accounting for (1)-(13) we conclude that in the limiting states turbulence must satisfy the
two-component limit and axisymmetry at large and small scales”.

The above relations for the invariants (11) and (12) also hold (very nearly)
across the region of viscous sublayer of wall-bounded flows if the inhomogeneous parts
of the dissipation correlations 1/4 (vo? u;u;/0x; 0x; ) are removed from &; using the
two-point correlation technique [8 (pp. 69-72), 9].

Anisotropy invariant mapping of wall turbulence

In an advanced approach, the dynamics of turbulence is studied across the func-
tional space (shown in fig. 1) formed by the two scalar invariants, 11, and I1I,, of the ani-
sotropy tensor. In contrast to the real space where observations usually take place, turbu-

*

Using the two-point correlation technique it is possible to show and demonstrate, utilizing the experimental [4] or
numerical databases [5], that local isotropy, local axisymmetry, and local homogeneity for the small-scale part of
turbulence must hold by definition in statistically isotropic, axisymmetric, and homogeneous fields, respectively in
order to satisfy the constraint of coincidence for the two-point correlations [6- 8].
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lence can appear in the invariant space only within a bounded domain which is quite
narrow. This suggests that the behavior of turbulence within the domain cannot differ too
much from the behavior at the surrounding boundaries [1]. Following this concept, the
analysis to be presented produces not only insights relevant for understanding the dy-
namics of wall turbulence but also provides the link between the mechanisms responsible
for transition and the continuous production of turbulence close to the solid boundaries.
Studies of the dynamics of coherent structures close to the wall by Kline ez al. [10], Kim,
Kline and Reynolds [11], and Falco [12] showed remarkable analogies to the sequence of
invents leading to the transition which led Laufer [13, 14] to the conclusions that these
processes are very closely interconnected and therefore should be treated theoretically
using the same mathematical tools.

The influence of the Reynolds number on the anisotropy of turbulence in a plane
channel flow is shown in fig. 2. There is noticeable trend in these data that can be clearly
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Figure 2. Anisotropy invariant mapping of turbulence in a
channel flow. Data, which correspond to low Reynolds number,
show the trend as Re — Re, towards the theoretical solution
valid for small, neutrally stable, statistically stationary axisym-
metric disturbances [19]. The shading indicates the area
occupied by the stable disturbances: for such disturbances it is
expected that the laminar regime in a flat plate boundary layer
will persist up to very high Reynolds numbers
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distinguished. As the Reynolds number decreases towards the critical value valid for
transition, from the laminar to the turbulent state, the anisotropy increases. Away from
the near-wall region, x5 > 8, the trend in the data indicates a tendency towards the right
boundary of the anisotropy invariant map which corresponds to the axisymmetric state
with the streamwise intensity larger than the intensities in the other two directions. Data
which correspond to the region of viscous sublayer, 0< x; <5, and lie along the
two-component limit, tend towards the one-component state of turbulence. Here, x; rep-
resents normalized distance from the wall x; =x,u,/v where u, is the wall shear veloc-
ity and vis the kinematic viscosity of the working fluid.

The extrapolated trajectory of the stable disturbances, indicated in fig. 2 by the
shading, which corresponds to Re < Re;, coincides with the result of theoretical analy-
sis of the transition process in a laminar boundary layer exposed to small (and therefore
linear), neutrally stable (which are losing energy through the viscous dissipation process
at the same rate approximately at which they gain energy from the mean flow), statisti-
cally stationary axisymmetric disturbances whose statistical properties are invariant un-
der rotation about the flow direction [19]. This particular invariance is logical and consis-
tent with the statistical dynamics of the disturbances far away from the near-wall region
which shows u] > uj = u; that as x, — « [8]. The above-mentioned theoretical consider-
ation of the transition process, based on the transport equations for the statistical proper-
ties of the disturbances, shows that the laminar regime in the boundary layer will persist
up to very high Reynolds numbers if the anisotropy of the free stream is sufficiently high.
This was tested experimentally, in a large wind tunnel facility of the Lehrsthul fiir
Stromungsmechanik in Erlangen, by maintaining the laminar regime in a flat plate
boundary layer up to Re, = xU./v = 4-10° where x is the distance from the leading edge of
the plate and U., is the free stream velocity [19].

Below we provide not only the proof but also quantitative support for the above
statements which indicate the chief possibility for rational control of flow very close to
the solid boundary: the effective way to suppress fluctuations in the near-wall region is to
force them to be predominantly one-component. Wisdom, embedded into the anisotropy
invariant map, suggests that this is equivalent to the requirement that fluctuations near the
wall satisfy the two-component limit, axisymmetry at large and small scales and
invariance under rotation about the flow direction.

The limiting state of near-wall turbulence

Let the mean flow be in the x; direction and consider the near-wall region lying
in the plane parallel to the wall x, = 0. A Taylor series expansion of the instantaneous ve-
locity fluctuations about the wall which satisfies the continuity equation du;/0x; = 0 reads
[20]:

2
a|x, + dr,x, +

ul =
u, = + byx3 + ..las x,—0 (14)
U3 = cle + 02x22 +
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where, the coefficients a;, b;, and c; are functions of time and space coordinates x; and x3.

If the small-scale part of the fluctuations is locally invariant to rotation about the
x; coordinate, it is fairly easy to prove that the following relations hold for statistics of the
velocity derivatives of the n' order [21]:

n 2 n 2

0"y _ 0"y, (15)
x5 oxy

n 2 n 2
O0'uy | _| O'ug (16)
0x) ox3

n 2 n 2
0"u, _ 0"uy (17)
oxy x5

Inserting the series expansion (14) for the velocity fluctuations into expressions
(15)-(17), it is straightforward to show, by comparing terms corresponding to the same
power of x, , that all coefficients a;, b;, and c;, must vanish in order to satisfy constraints
imposed by the local axisymmetry. We may conclude, therefore, that inhomogeneous but
locally axisymmetric turbulence, that is, turbulence whose statistical properties in the
dissipation range are invariant under rotation about the axis aligned with the mean flow
direction, must vanish in close proximity of the solid boundaries.

Logic, following the basics of invariant theory introduced by Lumley [2], sug-
gests that we may expect fluctuations in the near-wall region to satisfy constraints im-
posed by the local axisymmetry when these tend asymptotically towards the one-compo-
nent limit. For this very special case, two-component motions close to the wall must
additionally satisfy axisymmetry at large and small scales, which are closely interrelated
[3], and therefore also constraints imposed by local axisymmetry. Approaching the
one-component limit, all of the coefficients of the Taylor series expansion for the instan-
taneous fluctuations about the wall vanish and therefore also the dissipation rate at the
wall, causing significant suppression of small scale turbulence in the near-wall region.
Figure 3 shows that this expectation is confirmed by all available data from direct numer-
ical simulations of wall-bounded flows. This is demonstrated further in fig. 4, which
shows trajectories of the joint variation of the invariants of a; across the anisotropy-in-
variant map from the numerical database of drag-reducing, fully developed, turbulent
channel flow from Dimitropulos, Sureshkumar and Beris [27]. This figure confirms that,
with increasing drag reduction (DR), which is accompanied by suppression of wall turbu-
lence [28], the point that corresponds to the position at the wall x, = 0 moves upwards in
the direction of the one-component limit.

Omitting the technical details of how to produce the desired componentality of
the fluctuations close to the wall [29], which are not important to be explained here, the
examples in figs. 3 and 4 strongly support the major conclusion which emerges from the
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Figure 3. Turbulent dissipation rate at  0-30
the wall, ¢ =
the wall shear velocity and the kinematic o5
viscosity of the flow medium versus the
anisotropy of turbulence II, at the wall. A
best-fit line through the numerical data 0.20
extrapolates fairly well the expected
trend as the one-component limit

(II, = 2/3) is approached
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0.7
Iy
0.61 A
IC limit

051 Wall

Xy =
0.4 RS

0'.

0.31 P4
0 ]

Chanel centreline Newtonian fluid
0y Xg=13 Drag reduction
- DR = 0%

—005 0 005 01 015 02 025,03
0.7
Il Wall
0.6 N
IC limit
0.5
0.4
0.31 hanel centreline

Xp=3

Drag reduction
DR = 44%

-005 0

005 01 015 02 025 n 0.3
a

0.7
Il
0.6

IC limit
05

0.4

(=]

Chanel centreline
X;=38

2~
=

Drag reduction
DR = 15%

[e>]

-0.05 0 005 01 015 02 0.25).03

Figure 4. Anisotropy-invariant mapping of
turublence in a fully developed channel
flow with drag reduction from direct
numerical simulations of Dimitropulos,
Sureshkumar and Beris [27]. The trend in
the data at the wall strongly supports the
major conclusion which emerges from the
presented analysis
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Implications of the above-discussed property of the velocity fluctuations in the
near-wall region for drag reduction, control of the laminar to turbulence transition pro-
cess at huge Reynolds numbers and a dynamic description of the mechanism involved in
self-maintenance of turbulence in wall-bounded flows are subjects of current research ef-
forts [30, 31].
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