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Sta tis ti cal anal y sis of the ve loc ity fluctuations is per formed for the
near-wall re gion of wall-bounded flows. By de mand ing that the small-scale
part of the fluc tu a tions sat is fies con straints im posed by lo cal axisymmetry,
it was found that the small scales must be en tirely sup pressed in the
near-wall re gion. This ma jor con clu sion is well sup ported by all avail able
data from di rect nu mer i cal sim u la tions.
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Introduction 

The ques tion of how wall-bounded flows can be ra tio nally con trolled with rea -
son able cost is of fun da men tal and prac ti cal im por tance. This out stand ing ques tion has
en gi neer ing rel e vance since it is di rectly re lated to the vis cous drag and heat trans fer pro -
cesses. Sub stan tial work has been done along these lines, but only par tial suc cess has
been achieved. The pur pose of this pa per is to shed some light on the sub ject by con sid er -
ing the ve loc ity fluctuations in the near-wall re gion which pos sesses spe cific invariance
in the dis si pa tion range. Con straints that lead to effective damp ing of the ve loc ity
fluctuations close to the wall have been ex am ined. 

Be fore we pro ceed with for mal treat ment of the fun da men tal is sue re lated to
wall tur bu lence, it is use ful to ana lyse its evo lu tion by look ing into the ani so tropy of the
Reynolds stresses uti liz ing the da ta bases of di rect nu mer i cal sim u la tions at low Reynolds 
num bers. The level of ani so tropy of tur bu lence can be quantified, fol low ing anal y sis of
Lumley and Newman [1], by in tro duc ing the ani so tropy ten sor:
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A plot of IIa ver sus IIIa for axisymmetric tur bu lence, namely:
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and two-component turbulence, namely:

II IIIa a= +
2

9
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defines the anisotropy invariant map according to Lumley [2]. This plot, shown in fig. 1
bounds all physically realizable turbulence. Two curves shown in this figure represent
axisymmetric turbulence. The right curve corresponds to turbulence strained by
axisymmetric expansion and the left curve corresponds to straining by axisymmetric
contraction. Along the straight line resides two-component turbulence. Such turbulence
exists in the region of viscous sublayer of wall-bounded turbulent flows. The limiting
states of the turbulence are located at the corner points on the right- and left-hand sides of
the anisotropy invariant map and correspond to one-component turbulence and isotropic
two-component turbulence, respectively.

4

THERMAL  SCIENCE: Vol. 9 (2005), No. 1, pp. 3-12

Figure 1. Anisotropy invariant map and the limiting
values of invariants for the different states of the
turbulence



Note that re la tions (4) and (5) for the invariants of aij also hold for the invariants
of the ani so tropy eij in the stress dis si pa tion e nij i k j ku x u x= ¶ ¶ ¶ ¶/ / :
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There fore, in axisymmetric tur bu lence the invariants IIe and IIIe are re lated by:
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while in two-component turbulence,

II IIIe e= +
2

9
2 (10)

The invariants of eij co in cide with those cor re spond ing to aij:

IIe = IIa (11)

IIIe = IIIa (12)

in the limiting states of the turbulence owing to [3]:

eij = aij (13)

Look ing at the two ver ti ces of the ani so tropy in vari ant map shown in fig. 1 and
ac count ing for (1)-(13) we con clude that in the lim it ing states tur bu lence must sat isfy the
two-com po nent limit and axisymmetry at large and small scales*.

The above re la tions for the invariants (11) and (12) also hold (very nearly)
across the re gion of vis cous sublayer of wall-bounded flows if the inhomogeneous parts
of the dis si pa tion cor re la tions 1 4 2( / )n¶ ¶ ¶u u x xi j k k  are re moved from eij us ing the
two-point cor re la tion tech nique [8 (pp. 69-72), 9].

Anisotropy invariant mapping of wall turbulence

In an ad vanced ap proach, the dy nam ics of tur bu lence is stud ied across the func -
tional space (shown in fig. 1) formed by the two sca lar invariants, IIa and IIIa, of the ani -
so tropy ten sor. In con trast to the real space where ob ser va tions usu ally take place, tur bu -
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* Using the two-point correlation technique it is possible to show and demonstrate, utilizing the experi mental [4] or
numerical databases [5], that local isotropy, local axisymmetry, and local homogeneity for the small-scale part of
turbulence must hold by definition in statistically isotropic, axisymmetric, and homogeneous fields, respectively in 
order to satisfy the constraint of coincidence for the two-point correlations [6- 8].



lence can ap pear in the in vari ant space only within a bounded do main which is quite
nar row. This sug gests that the be hav ior of tur bu lence within the do main can not dif fer too
much from the be hav ior at the sur round ing bound aries [1]. Fol low ing this con cept, the
anal y sis to be pre sented pro duces not only in sights rel e vant for un der stand ing the dy -
nam ics of wall tur bu lence but also pro vides the link be tween the mech a nisms re spon si ble 
for tran si tion and the con tin u ous pro duc tion of tur bu lence close to the solid bound aries.
Stud ies of the dy nam ics of co her ent struc tures close to the wall by Kline et al. [10], Kim,
Kline and Reynolds [11], and Falco [12] showed re mark able anal o gies to the se quence of
in vents lead ing to the tran si tion which led Laufer [13, 14] to the con clu sions that these
pro cesses are very closely in ter con nected and there fore should be treated the o ret i cally
us ing the same math e mat i cal tools. 

The in flu ence of the Reynolds num ber on the ani so tropy of tur bu lence in a plane 
chan nel flow is shown in fig. 2. There is no tice able trend in these data that can be clearly
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Figure 2. Anisotropy invariant mapping of turbulence in a
channel flow. Data, which correspond to low Reynolds number,
show the trend as Re ®  Recrit towards the the oretical solution
valid for small, neutrally stable, statistically stationary axisym-
metric disturbances [19]. The shading indicates the area
occupied by the stable disturbances: for such disturbances it is
expected that the laminar regime in a flat plate boundary layer
will persist up to very high Reynolds numbers



dis tin guished. As the Reynolds num ber de creases to wards the crit i cal value valid for
tran si tion, from the lam i nar to the tur bu lent state, the ani so tropy in creases. Away from
the near-wall re gion, x2 8+ ³ , the trend in the data in di cates a ten dency to wards the right
bound ary of the ani so tropy in vari ant map which cor re sponds to the axisymmetric state
with the streamwise in ten sity larger than the in ten si ties in the other two di rec tions. Data
which cor re spond to the re gion of vis cous sublayer, 0 52£ <+x , and lie along the
two-com po nent limit, tend to wards the one-com po nent state of tur bu lence. Here, x2

+  rep -
re sents nor mal ized dis tance from the wall  x x u2 2

+ = t n/  where ut is the wall shear  ve loc -
ity and n is the ki ne matic vis cos ity of the work ing fluid.

The ex trap o lated tra jec tory of the sta ble dis tur bances, in di cated in fig. 2 by the
shad ing, which cor re sponds to Re £  Recrit, co in cides with the re sult of the o ret i cal anal y -
sis of the tran si tion pro cess in a lam i nar bound ary layer ex posed to small (and there fore
lin ear), neu trally sta ble (which are los ing en ergy through the vis cous dis si pa tion pro cess
at the same rate ap prox i mately at which they gain en ergy from the mean flow), sta tis ti -
cally sta tion ary axisymmetric dis tur bances whose sta tis ti cal prop er ties are in vari ant un -
der ro ta tion about the flow di rec tion [19]. This par tic u lar invariance is log i cal and con sis -
tent with the sta tis ti cal dy nam ics of the dis tur bances far away from the near-wall re gion
which shows ¢ > ¢ @ ¢u u u1 3 2 that as x2 ® 4 [8]. The above-men tioned the o ret i cal con sid er -
ation of the tran si tion pro cess, based on the trans port equa tions for the sta tis ti cal prop er -
ties of the dis tur bances, shows that the lam i nar re gime in the bound ary layer will per sist
up to very high Reynolds num bers if the ani so tropy of the free stream is suf fi ciently high.
This was tested ex per i men tally, in a large wind tun nel fa cil ity of the Lehrsthul für
Strömungsmechanik in Erlangen, by main tain ing the lam i nar re gime in a flat plate
bound ary layer up to Rex = xU4/n @ 4·106 where x is the dis tance from the lead ing edge of
the plate and U4 is the free stream ve loc ity [19]. 

Be low we pro vide not only the proof but also quan ti ta tive sup port for the above
state ments which in di cate the chief pos si bil ity for ra tio nal con trol of flow very close to
the solid bound ary: the effective way to sup press fluctuations in the near-wall re gion is to
force them to be pre dom i nantly one-com po nent. Wis dom, em bed ded into the ani so tropy
in vari ant map, sug gests that this is equiv a lent to the re quire ment that fluctuations near the 
wall sat isfy the two-com po nent limit, axisymmetry at large and small scales and
invariance un der ro ta tion about the flow di rec tion.

The limiting state of near-wall turbulence 

Let the mean flow be in the x1 di rec tion and con sider the near-wall re gion ly ing
in the plane par al lel to the wall x2 = 0. A Tay lor se ries ex pan sion of the in stan ta neous ve -
loc ity fluc tu a tions about the wall which sat is fies the con ti nu ity equa tion ¶uk/¶xk = 0 reads 
[20]:
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where, the coefficients ai, bi, and ci are functions of time and space coordinates x1 and x3. 
If the small-scale part of the fluc tu a tions is lo cally in vari ant to ro ta tion about the

x1 co or di nate, it is fairly easy to prove that the fol low ing re la tions hold for sta tis tics of the
ve loc ity de riv a tives of the nth or der [21]:
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In sert ing the se ries ex pan sion (14) for the ve loc ity fluc tu a tions into ex pres sions
(15)-(17), it is straight for ward to show, by com par ing terms cor re spond ing to the same
power of x2 , that all co ef fi cients ai, bi, and ci, must van ish in or der to sat isfy con straints
im posed by the lo cal axisymmetry. We may con clude, there fore, that inhomogeneous but 
lo cally axisymmetric tur bu lence, that is, tur bu lence whose sta tis ti cal prop er ties in the
dis si pa tion range are in vari ant un der ro ta tion about the axis aligned with the mean flow
di rec tion, must van ish in close prox im ity of the solid bound aries.

Logic, fol low ing the ba sics of in vari ant the ory in tro duced by Lumley [2], sug -
gests that we may ex pect fluc tu a tions in the near-wall re gion to sat isfy con straints im -
posed by the lo cal axisymmetry when these tend as ymp tot i cally to wards the one-com po -
nent limit. For this very spe cial case, two-com po nent mo tions close to the wall must
ad di tion ally sat isfy axisymmetry at large and small scales, which are closely in ter re lated
[3], and there fore also con straints im posed by lo cal axisymmetry. Ap proach ing the
one-com po nent limit, all of the co ef fi cients of the Tay lor se ries ex pan sion for the in stan -
ta neous fluc tu a tions about the wall van ish and there fore also the dis si pa tion rate at the
wall, caus ing sig nif i cant sup pres sion of small scale tur bu lence in the near-wall re gion.
Fig ure 3 shows that this ex pec ta tion is con firmed by all avail able data from di rect nu mer -
i cal sim u la tions of wall-bounded flows. This is dem on strated fur ther in fig. 4, which
shows tra jec to ries of the joint vari a tion of the invariants of aij across the ani so tropy-in -
vari ant map from the nu mer i cal da ta base of drag-re duc ing, fully de vel oped, tur bu lent
chan nel flow from Dimitropulos, Sureshkumar and Beris [27]. This fig ure con firms that,
with in creas ing drag re duc tion (DR), which is ac com pa nied by sup pres sion of wall tur bu -
lence [28], the point that cor re sponds to the po si tion at the wall x2 = 0 moves up wards in
the di rec tion of the one-com po nent limit.

Omit ting the tech ni cal de tails of how to pro duce the de sired componentality of
the fluctuations close to the wall [29], which are not im por tant to be ex plained here, the
ex am ples in figs. 3 and 4 strongly sup port the ma jor con clu sion which emerges from the
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pres ent study: the effective way to sup press fluctuations in the near-wall re gion is to force 
them to be pre dom i nantly one-com po nent. 
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Figure 3. Turbulent dissipation rate at
the wall, e n= +( )a c1

2
1
2  normalized with

the wall shear velocity and the kinematic
viscosity of the flow medium versus the
anisotropy of turbulence IIa at the wall. A
best-fit line through the numerical data
extrapolates fairly well the expected
trend as the one-component limit
(IIa = 2/3) is approached

Figure 4. Anisotropy-invariant mapping of
turublence in a fully developed channel
flow with drag reduction from direct
numerical simulations of Dimitropulos,
Sureshkumar and Beris [27]. The trend in
the data at the wall strongly supports the
major conclusion which emerges from the
presented analysis



Im pli ca tions of the above-dis cussed prop erty of the ve loc ity fluctuations in the
near-wall re gion for drag re duc tion, con trol of the lam i nar to tur bu lence tran si tion pro -
cess at huge Reynolds num bers and a dy namic de scrip tion of the mech a nism in volved in
self-main te nance of tur bu lence in wall-bounded flows are sub jects of cur rent re search ef -
forts [30, 31].
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