THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Enhanced performance of photovoltaic modules via experimental evaluation of novel heat sink designs

ABSTRACT
This study investigates the performance of photovoltaic (PV) module integration with novel designs of heat sink modules (PV/HS-I, PV/HS-II, PV/HS-III, and PV/HS-IV), introducing an optimized converging-diverging fin configuration (PV/HS-II) that demonstrates superior cooling performance under extreme desert conditions. The experimental work analyzes the impact of cooling air velocity, solar intensity, solar panel surface area, and power temperature coefficient on the PV module performance and productivity. The results demonstrate that raising the cooling air speed enhances convective cooling, lowers the temperature of the PV surface, and increases electrical efficiency and productivity, especially for the PV/HS-II design, which is the most effective design compared to other heat sink configurations. Under Jeddah's climatic conditions, the PV/HS-II module achieves a peak electrical efficiency of 19.5% and the highest electrical energy productivity of 65.57 kW. The decrease in power temperature coefficient from -0.5 %/°C to - 0.3 %/°C increases electrical efficiency from 16.5 % to 18.65 %, improving electrical energy productivity by 40 %. This work provides the first comprehensive experimental evaluation of fin geometry optimization for PV cooling in high-irradiance environments, offering practical design solutions for solar farms in hot climates. The study shows how crucial active cooling is for reducing efficiency losses, especially in places with a lot of sunlight, like Jeddah, Saudi Arabia. It also gives valuable tips for improving the performance of photovoltaic systems.
KEYWORDS
PAPER SUBMITTED: 2025-06-01
PAPER REVISED: 2025-06-28
PAPER ACCEPTED: 2025-08-05
PUBLISHED ONLINE: 2025-09-13
DOI REFERENCE: https://doi.org/10.2298/TSCI250601159S
REFERENCES
  1. Olabi, A.G., Elsaid, K., Obaideen, K., Abdelkareem, M.A., Rezk, H., Wilberforce, T., Maghrabie, HM., Enas taha sayed, Renewable energy systems: comparisons, challenges and barriers, sustainability indicators, and the contribution to UN sustainable development goals, Int. J. Thermofluids 20 (2023), 100498. doi.org/10.1016/j.ijft.2023.100498
  2. Obaideen, K., Nooman AlMallahi, M., Alami, A.H., Ramadan, M., Abdelkareem, M.A., Shehata, N., Olabi, A., On the contribution of solar energy to sustainable developments goals: case study on Mohammed bin Rashid Al Maktoum solar park, Int. J. Thermofluids 12 (2021) 100123. doi.org/10.1016/j.ijft.2021.100123
  3. Aljaghoub, H., Abumadi, F., AlMallahi, M.N., Obaideen, K., Alami, A.H., Solar PV cleaning techniques contribute to sustainable development goals (SDGs) using multi-criteria decision-making (MCDM): assessment and review, Int. J. Thermofluids 16 (2022) 100233, doi.org/10.1016/j.ijft.2022.100233
  4. Almadhhachi, M., Seres, I., Farkas, I., Electrical power harvesting enhancement of PV module by a novel hemispherical configuration, Int. J. Thermofluids 20 (2023) 100460, doi.org/10.1016/j.ijft.2023.100460
  5. Salameh, W., Faraj, J., Khaled, M., Numerical study of cooling photovoltaic panels with air exhausted from industrial systems: comparisons and innovative configurations, Int. J. Thermofluids 20 (2023) 100493. doi.org/10.1016/j.ijft.2023.100493
  6. Radwan, A., Mahmoud, M., Olabi, A., Rezk, A., Maghrabie, H.M., Abdelkareem, M.A., Thermal comparison of mono-facial and bi-facial photovoltaic cells considering the effect of TPT layer absorptivity, Int. J. Thermofluids 18 (2023) 100306. doi.org/10.1016/j.ijft.2023.100306
  7. Salehi, R., Jahanbakhshi, A., Ooi, J.B., Rohani, A., Golzarian, M.R., Study on the performance of solar cells cooled with heatsink and nanofluid added with aluminum nanoparticle, Int. J. Thermofluids 20 (2023) 100445. doi.org/10.1016/j.ijft.2023.100445
  8. Alsaqoor, S., Alqatamin, A., Alahmer, A., Nan, Z., Al-Husban, Y., Jouhara, H., The impact of phase change material on photovoltaic thermal (PVT) systems: a numerical study, Int. J. Thermofluids 18 (2023) 100365. doi.org/10.1016/j.ijft.2023.100365 17
  9. Bhakre, S.S., Sawarkar, P.D., Kalamkar, V.R., Performance evaluation of PV panel surfaces exposed to hydraulic cooling - A review, Sol. Energy 224 (2021) 1193-1209. doi.org/10.1016/j.energy.2022.124654
  10. Sheikh, Y., Jasim, M., Qasim, M., Qaisieh, A., Hamdan, M.O., Abed, F., Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: a numerical study, Int. J. Thermofluids 23 (2024) 100748. doi.org/10.1016/j.ijft.2024.100748
  11. Habchi, C., Bou-Mosleh, C., Khaled, M., An experimental analysis of a hybrid photovoltaic thermal system through parallel water pipe integration, Int. J. Thermofluids 21 (2024) 100538. doi.org/10.1016/j.ijft.2023.100538
  12. Siah Chehreh Ghadikolaei, S., Solar photovoltaic cells performance improvement by cooling technology: an overall review, Int. J. Hydrog. Energy 46 (18) (2021) 10939-10972. doi.org/10.1016/j.ijhydene.2020.12.164
  13. Cui, Y., Zhu, J., Zhang, F., Shao, Y., Xue, Y., Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic, and environmental) assessments, Renew. Sustain. Energy Rev. 158 (2022) 112147. doi.org/10.1016/j.rser.2022.112147
  14. Madhi, H., Aljabair, S., Imran, A.A., A review of photovoltaic/thermal system cooled using mono and hybrid nanofluids, Int. J. Thermofluids 22 (2024) 100679. doi.org/10.1016/j.ijft.2024.100679
  15. Dida, M., Boughali, S., Bechki, D., Bouguettaia, H., Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions, Energy Convers. Manag. 243 (2021) 114328. doi.org/10.1016/j.enconman.2021.114328
  16. Suresh, A.K., Khurana, S., Nandan, G., Dwivedi, G., Kumar, S., Role on nanofluids in cooling solar photovoltaic cell to enhance overall efficiency, Mater. Today: Proc. 5 (9) (2018), 20614-20620. doi.org/10.1016/j.matpr.2018.06.442
  17. Ghadiri, M., Sardarabadi, M., Pasandideh-fard, M., Moghadam, A.J., Experimental investigation of a PVT system performance using nano ferrofluids, Energy Convers. Manage. 103 (2015), 468-476. doi.org/10.1016/j.enconman.2015.06.077
  18. Idoko, L., Anaya-Lara, O., McDonald, A., Enhancing PV modules efficiency and power output using multi-concept cooling technique, Energy Rep. 4 (2018), 357-369. doi.org/10.1016/j.egyr.2018.05.004
  19. Omisanya, M.I., Hamzat, A.K., Adedayo, S.A., Adediran, I.A., Asafa, T.B., Enhancing the thermal performance of solar collectors using nanofluids, IOP Conf. Ser. Mater. Sci. Eng. 805 (1) (2020), 012015. doi.org/10.1016/j.csite.2025.106460
  20. Siecker, J., Kusakana, K., Numbi, E.B., A review of solar photovoltaic systems cooling technologies, Renew. Sustain. Energy Rev. 79 (2017), 192-203. doi.org/10.1016/j.rser.2017.05.053
  21. Cătălin George Popovici, Sebastian Valeriu Hudișteanua, Theodor Dorin Mateescu, Nelu-Cristian Cherecheș, Efficiency improvement of photovoltaic panels by using air cooled heat sinks, Energy Procedia 85 (2016) 425 - 432. doi.org/10.1016/j.egypro.2015.12.223 18
  22. Mazón-Hernández, R., García-Cascales, J.R., Vera-García, F., Káiser, A.S., Zamora, B., Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream, Int. J. Photoenergy (2013). doi.org/10.1155/2013/830968
  23. Golzari, S., Kasaeian, A., Amidpour, M., Nasirivatan, S., Mousavi, S., Experimental investigation of the effects of corona wind on the performance of an air-cooled PV/T., Renew Energy 127 (2018), 284-297. doi.org/10.1016/j.renene.2018.04.029
  24. Kaiser, A.S., Zamora, B., Mazón, R., García, J.R., Vera, F., Experimental study of cooling BIPV modules by forced convection in the air channel, Appl. Energy 135 (2014), 88-97. doi.org/10.1016/j.apenergy.2014.08.079
  25. Teo, H.G., Lee, P.S., Hawlader, M.N.A., An active cooling system for photovoltaic modules, Appl. Energy 90 (1) (2012), 309-315. doi.org/10.1016/j.apenergy.2011.01.017
  26. Soliman, A.M., Hassan, H., Ookawara, S., An experimental study of the performance of the solar cell with heat sink cooling system, Energy Procedia 162 (2019), 127-135. doi.org/10.1016/j.egypro.2019.04.014
  27. Arifin, Z., Tjahjana, D.D.D.P., Hadi, S., Rachmanto, R.A., Setyohandoko, G., Sutanto, B., Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks, Int. J. Photoenergy (2020). doi.org/10.1155/2020/1574274
  28. A. Almuwailhi, O. Zeitoun, Investigating the cooling of solar photovoltaic modules under the conditions of Riyadh, Journal of King Saud University - Engineering Sciences 35 (2023) 123-136. doi.org/10.1016/j.jksues.2021.03.007
  29. Ahssan M.A. Alshibil, Piroska Vig, Istvan Farkas, Performance enhancement attempts on the photovoltaic/thermal module and the sustainability achievements: A review, Energy 304 (2024) 132099. doi.org/10.1016/j.energy.2024.132099
  30. Ihsan Okta Harmailil, Sakhr M., Sultan, Tso, C.P., Ahmad Fudholi, Masita Mohammad, Adnan Ibrahim, A review on recent photovoltaic module cooling techniques: Types and assessment methods, Results in Engineering 22 (2024) 102225. doi.org/10.1016/j.rineng.2024.102225
  31. Mahmoud M. Abd-Elhady, Mohab A. Elhendawy, Muhannad S. Abd-Elmajeed, Rahaf B. Rizk, Enhancing photovoltaic systems: A comprehensive review of cooling, concentration, spectral splitting, and tracking techniques, Next Energy 6 (2025) 100185. doi.org/10.1016/j.nxener.2024.100185
  32. Mohamad Abou Akrouch, Khaled Chahine, Jalal Faraj, Farouk Hachem, Cathy Castelain, Mahmoud Khaled, Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification, Energy and Built Environment 6 (2025) 248-276. doi.org/10.1016/j.enbenv.2023.11.002
  33. Al-Waeli, Ali H.A., Kazem, Hussein A., Yousif, Jabar H., Chaichan, Miqdam T., Sopian, Kamaruzzaman, Mathematical and neural network models for predicting the electrical performance of a PV/T system, Int. Journal of Energy Research (2019) 1-18. doi.org/10.1002/er.4807
  34. Kazem, Hussein A., Al-Waeli, Ali H.A., Chaichan, Miqdam T., Sopian, Kamaruzzaman, Numerical and experimental evaluation of nanofluids based photovoltaic/thermal systems in Oman: Using silicone-carbide nanoparticles with water-ethylene glycol mixture, Case Studies in Thermal Engineering 26 (2021) 101009. doi.org/10.1016/j.csite.2021.101009 19
  35. Djordjevic, Stefan N., Krstic, Marko S., Pantic, Lana S., Radonjic, Ivana S., Mancic, Marko V., Begovic, Veljko S., Gocic, Sasa R., Radovanovic, Branka G., Enhancement of pv panel's power using closed back side cooling system and numerical simulation, Thermal Science OnLine-First Issue 00 (2025) 52-52. doi.org/10.2298/TSCI241218052D
  36. Muniy, Srilasri and Narayanasamy, Stalin, Experimental analysis on the performance of photovoltaic module with al2o3 deionized water nanofluid, Thermal Science 28 (2024) 1A 357-364. doi.org/10.2298/TSCI230829268M
  37. Hasan, A., Sarwar, J., Effect of fin spacing and length on the thermal performance of heat sinks in PVT systems, Renewable Energy Journal 45 (2017), 123-134. doi:10.1088/1755-1315/1281/1/012059
  38. Kumar, R., & Singh, S., Optimization of heat sink designs for enhanced cooling in photovoltaic-thermal systems, Energy Conversion and Management 180 (2019) 789-801. doi.org/10.1016/j.enbuild.2022.112274
  39. Klein, S.A., Engineering Equation Solver (EES) for Microsoft Windows Operating Systems: Academic Professional Version. F-chart Software, Medison, WI, USA, 2012. Available online: www.fchart.com (accessed on 5 February 2025)
  40. Moffat, R.J., Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci 1 (1) (1988) 3-17. doi.org/10.1016/0894-1777(88)90043-X
  41. Taylor, J.R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed., University Science Books, Sausalito, CA, 1997. ISBN: 1940380081, 9781940380087
  42. Madhu Sharma, Kamal Bansal, Dharam Buddhi, Real time data acquisition system for performance analysis of modified PV module and derivation of cooling coefficients of electrical parameters, Procedia Comput. Sci. 48 (2015) 582-588. doi.org/10.1016/j.procs.2015.04.139
  43. Benghanem, M., Al-Mashraqi, A.A., Daffallah, K.O., Performance of solar cells using thermoelectric module in hot sites, Renew. Energy 89 (2016) 51-59. doi.org/10.1016/j.renene.2015.12.011
  44. Linus Idoko, Olimpo Anaya-Lara, Alasdair McDonald, Enhancing PV modules efficiency and power output using multi-concept cooling technique, Energy Rep. 4 (2018) 357-369. doi.org/10.1016/j.egyr.2018.05.004
  45. Elnozahy, A., Abd-Elbary, H., Abo-Elyousr, F.K., Efficient energy harvesting from PV Panel with reinforced hydrophilic nano-materials for eco-buildings, Energy Built Environ. 5 (2024) 393-403. doi.org/10.1016/j.enbenv.2022.12.001
  46. Anas Ahmed, Fouda, A., Elattar, H.F., Khaled Alnamasi, Alsharif Abdullah, M.A., Advancing photovoltaic thermal module efficiency through optimized heat sink designs, Applied Thermal Engineering 271 (2025) 126241. doi.org/10.1016/j.applthermaleng.2025.126241