THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Research on heating and defrosting performance of air source heat pump system based on composite phase change materials

ABSTRACT
The performance of air source heat pump systems is limited in extreme climate conditions, especially in heating mode, which may face defrosting problems, resulting in energy waste and reduced system efficiency. In order to improve this problem, this article uses 5% expanded graphite/paraffin composite phase change material to preheat the heat accumulator while heating the room, and evaluates the heating and defrosting performance of the air source heat pump based on composite phase change materials. Experimental results show that after using the regenerator, the defrost evaporation period in the defrost cycle is reduced by 42.2%, the resume heating period is reduced by 38.7%, the compressor power consumption is reduced by 42.1% compared with the original system, and the average outlet temperature of indoor unit increased by 8.1°C, and the indoor temperature fluctuation is reduced. This research is of great significance to the performance optimization of air source heat pumps under frost-prone conditions.
KEYWORDS
PAPER SUBMITTED: 2025-03-17
PAPER REVISED: 2025-04-22
PAPER ACCEPTED: 2025-07-16
PUBLISHED ONLINE: 2025-09-13
DOI REFERENCE: https://doi.org/10.2298/TSCI250317151W
REFERENCES
  1. HAO F, SHAO W. What really drives the deployment of renewable energy? A global assessment of 118 countries[J/OL]. Energy Research & Social Science, 72(2021), 101880. DOI:10.1016/j.erss.2020.101880
  2. ZHAO X, LUO D. Driving force of rising renewable energy in China: Environment, regulation and employment[J/OL]. Renewable and Sustainable Energy Reviews, 68(2017), pp. 48-56. DOI:10.1016/j.rser.2016.09.126
  3. ZHANG L, JIANG Y, DONG J, et al. . Advances in vapor compression air source heat pump system in cold regions: A review[J/OL]. Renewable and Sustainable Energy Reviews, 81 (2018), pp. 353-365. DOI:10.1016/j.rser.2017.08.009
  4. SONG M, DENG S, DANG C, et al. . Review on improvement for air source heat pump units during frosting and defrosting[J/OL]. Applied Energy, 211(2018), pp. 1150-1170. DOI:10.1016/j.apenergy.2017.12.022
  5. RUAN F, QIN D, XU S, et al. . Study on the optimization of heat loss during operation of air source heat pump based on entransy theory[J/OL]. Thermal science, 28(2024), 4, pp. 3039-3048. DOI:10.2298/TSCI231016078R
  6. SHEN J, GUO T, TIAN Y, et al. . Design and experimental study of an air source heat pump for drying with dual modes of single stage and cascade cycle[J/OL]. Applied Thermal Engineering, 129(2018), pp. 280-289. DOI:10.1016/j.applthermaleng.2017.10.047
  7. LIU G, XIONG T, SUN T, et al. . Frosting and defrosting characteristics of household refrigerators and freezers: Recent progress and perspectives[J/OL]. Energy and Buildings, 303(2024), 113755. DOI:10.1016/j.enbuild.2023.113755
  8. WEI W, FENG Z, NI L, et al. . Frosting suppression performance enhancement of air source heat pump through improving relative capacity[J/OL]. Applied Thermal Engineering, 236(2024), 121698. DOI:10.1016/j.applthermaleng.2023.121698
  9. WU C, LIU F, LI X, et al. . Low-temperature air source heat pump system for heating in severely cold area: Long-term applicability evaluation[J/OL]. Building and Environment, 208(2022), 108594. DOI:10.1016/j.buildenv.2021.108594
  10. SU W, LI W, ZHANG X. Simulation analysis of a novel no-frost air-source heat pump with integrated liquid desiccant dehumidification and compression-assisted regeneration[J/OL]. Energy Conversion and Management, 148(2017), pp. 1157-1169. DOI:10.1016/j.enconman.2017.06.059
  11. KWAK K, BAI C. A study on the performance enhancement of heat pump using electric heater under the frosting condition: Heat pump under frosting condition[J/OL]. Applied Thermal Engineering, 30(2010), 6, pp. 539-543. DOI:10.1016/j.applthermaleng.2009.10.016
  12. LI R, WANG Z, ZHANG Y, et al. . Performance improvement of vapor compression heat pump with superhydrophobic finned-tube evaporator[J/OL]. Journal of Building Engineering, 87(2024), 109013. DOI:10.1016/j.jobe.2024.109013
  13. QU M, LU M, LI Z, et al. . Thermal energy storage based (TES-based) reverse cycle defrosting control strategy optimization for a cascade air source heat pump[J/OL]. Energy and Buildings, 219(2020), 110014. DOI:10.1016/j.enbuild.2020.110014
  14. CHUNG Y, NA S I, YOO J W, et al. . A determination method of defrosting start time with frost accumulation amount tracking in air source heat pump systems[J/OL]. Applied Thermal Engineering, 184(2021), 116405. DOI:10.1016/j.applthermaleng.2020.116405
  15. WANG W, ZHOU Q, TIAN G, et al. . A novel defrosting initiation strategy based on convolutional neural network for air-source heat pump[J/OL]. International Journal of Refrigeration, 128(2021), pp. 95-103. DOI:10.1016/j.ijrefrig.2021.04.001
  16. MA L, WANG F, WANG Z, et al. . Experimental investigation on an air source heat pump system with coupled liquid-storage gas-liquid separator regarding heating and defrosting performance[J/OL]. International Journal of Refrigeration, 134(2022), pp. 176-188. DOI:10.1016/j.ijrefrig.2021.11.025
  17. LYU N, SHAO Z, HE H, et al. . Performance study of an active-passive combined anti-frosting method for fin-tube heat exchanger[J/OL]. Building and Environment, 222 3(2022), 109365. DOI:10.1016/j.buildenv.2022.109365
  18. LI S, LU J, LI W, et al. . Thermodynamic analyses of a novel ejector enhanced dual-temperature air source heat pump cycle with self-defrosting[J/OL]. Applied Thermal Engineering, 215(2022), 118944. DOI:10.1016/j.applthermaleng.2022.118944
  19. LIU Z, ZHAO F, ZHANG L, et al. . Performance of bypass cycle defrosting system using compressor casing thermal storage for air-cooled household refrigerators[J/OL]. Applied Thermal Engineering, 130(2018), pp. 1215-1223. DOI:10.1016/j.applthermaleng.2017.11.077
  20. QU M, LI T, DENG S, et al. . Improving defrosting performance of cascade air source heat pump using thermal energy storage based reverse cycle defrosting method[J/OL]. Applied Thermal Engineering, 121(2017), pp. 728-736. DOI:10.1016/j.applthermaleng.2017.04.146
  21. CHEN X. Analysis of thermal characteristics and thermal storage performance of energy-saving phase change thermal storage materials in buildings[J/OL]. Thermal science, 28(2024), 2B, pp. 1509-1517. DOI:10.2298/TSCI2402509C
  22. SHI L, HUANG C, ZHENG N, et al. . Thermal energy storage characteristics of carbon-based phase change composites for photo-thermal conversion[J/OL]. Journal of Energy Storage, 77(2024), 109892. DOI:10.1016/j.est.2023.109892
  23. BHARATHIRAJA R, RAMKUMAR T, SELVAKUMAR M. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications[J/OL]. Journal of Energy Storage, 73(2023), 109216. DOI:10.1016/j.est.2023.109216
  24. LI Z L, ZHANG C L, LIU H M, et al. . Feasibility analysis of thermal storage defrosting method for air source heat pump: From energetic and economic viewpoints[J/OL]. Applied Thermal Engineering, 236(2024), 121828. DOI:10.1016/j.applthermaleng.2023.121828
  25. XU Z, HAN L. An experimental study on energy-storage based defrosting performance of an air source heat pump system with a micro-channel heat exchanger as outdoor coil[J/OL]. Applied Thermal Engineering, 240(2024), 122067. DOI:10.1016/j.applthermaleng.2023.122067