THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

External Links

online first only

Dynamic radiative cooling: A review of materials for energy-efficient window applications

ABSTRACT
Radiative cooling materials have received enormous attention for their ability to cool below ambient temperature without energy consumption. Unlike conventional radiative cooling systems, which can result in excessive cooling during colder months, dynamic radiative cooling materials can dynamically adjust their thermal radiation properties in response to environmental changes, enabling efficient cooling and heating across different seasons. This review summarizes the recent developments in dynamic radiative cooling materials, focusing on their physical mechanisms, including mechanically assisted films, thermochromic materials, temperature-responsive gels, and solvent-assisted systems. Special attention is given to their applications in energy-efficient building windows and facades. The challenges of scaling dynamic radiative cooling technologies for widespread use and their potential for future development are discussed, with recommendations for improving performance, sustainability, and integration into modern building systems.
KEYWORDS
PAPER SUBMITTED: 2024-12-28
PAPER REVISED: 2025-03-20
PAPER ACCEPTED: 2025-04-11
PUBLISHED ONLINE: 2025-07-05
DOI REFERENCE: https://doi.org/10.2298/TSCI241228098H
REFERENCES
  1. GOLDSTEIN E. A., et al. Sub-ambient non-evaporative fluid cooling with the sky. Nature Energy, 2017,2(9): 17143. DOI:10.1038/nenergy.2017.143
  2. WANG S., MA Z. Supervisory and optimal control of building HVAC systems: A review. Hvac&RResearch, 2008, 14(1): 3-32
  3. HE M., et al. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recyclingtowards Carbon Neutrality. Angewandte Chemie, 2022, 134(15): e202112835
  4. LIANG J., et al. Radiative cooling for passive thermal management towards sustainable carbonneutrality. National Science Review, 2023, 10(1): nwac208. DOI:10.1093/nsr/nwac208
  5. GAO W., CHEN Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. Small,2023, 19(18): 2206145. DOI:10.1002/smll.202206145
  6. STARK A. K. Methods for rejecting daytime waste heat to outer space. National Science Review, 2017,4(6): 789-790. DOI:10.1093/nsr/nwx052
  7. ZHU L., et al. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermalblackbody. Proceedings of the National Academy of Sciences, 2015, 112(40): 12282-12287
  8. CHEN Z., et al. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.Nature Communications, 2016, 7(1): 13729. DOI:10.1038/ncomms13729
  9. FAN S., RAMAN A. Metamaterials for radiative sky cooling. National Science Review, 2018, 5(2): 132-133
  10. MA Y. The super-cool materials that send heat to space. Nature. 2020; 577:18-20
  11. LI Z., et al. Fundamentals, materials, and applications for daytime radiative cooling. AdvancedMaterials Technologies, 2020, 5(5): 1901007
  12. LI W., FAN S. Radiative Cooling: Harvesting the Coldness of the Universe. Optics and Photonics News,2019, 30(11): 32-39. DOI:10.1364/OPN.30.11.000032
  13. YU X., et al. Review of radiative cooling materials: Performance evaluation and design approaches.Nano Energy, 2021, 88: 106259. DOI:10.1016/j.nanoen.2021.106259
  14. LIN K., et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity.Science. 2023; 382(6671):691-7
  15. RAMAN A. P., et al. Passive radiative cooling below ambient air temperature under direct sunlight.Nature, 2014, 515(7528): 540-544. DOI:10.1038/nature13883
  16. XUE X., et al. Creating an Eco‐Friendly Building Coating with Smart Subambient Radiative Cooling.Advanced Materials, 2020, 32(42): 1906751. DOI:10.1002/adma.201906751
  17. LIU R., et al. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.ACS Applied Materials & Interfaces, 2022, 14(41): 46972-46979. DOI:10.1021/acsami.2c12400
  18. WU Q., et al. Passive daytime radiative cooling coatings with renewable self-cleaning functions.Chinese Chemical Letters, 2024, 35(2): 108687. DOI:10.1016/j.cclet.2023.108687
  19. ZHOU Z., et al. Transparent Polymer Coatings for Energy-Efficient Daytime Window Cooling. CellReports Physical Science, 2020, 1(11): 100231. DOI:10.1016/j.xcrp.2020.100231
  20. XU J., et al. All-Day Freshwater Harvesting through Combined Solar-Driven Interfacial Desalinationand Passive Radiative Cooling. ACS Applied Materials & Interfaces, 2020, 12(42): 47612-47622
  21. WANG X., et al. Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime RadiativeCooling. Advanced Functional Materials, 2020, 30(5): 1907562. DOI:10.1002/adfm.201907562
  22. LI X., et al. Ultrawhite BaSO 4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling.ACS Applied Materials & Interfaces, 2021, 13(18): 21733-21739. DOI:10.1021/acsami.1c02368
  23. ZHANG X.., et al. A Moisture-Wicking Passive Radiative Cooling Hierarchical Metafabric. ACS Nano,2022, 16(2): 2188-2197. DOI:10.1021/acsnano.1c08227
  24. ZENG S, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling.Science. 2021, 373(6555):692-6
  25. CAI L., et al. Spectrally selective nanocomposite textile for outdoor personal cooling. AdvancedMaterials. 2018, 30(35):1802152
  26. CAI L., et al. Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles. Joule,2019, 3(6): 1478-1486. DOI:10.1016/j.joule.2019.03.015
  27. LI T., et al. A radiative cooling structural material. Science, 2019, 364(6442): 760-763.DOI:10.1126/science.aau9101
  28. HAN D., et al. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate CompositeSiO2 Aerogel Coating for Daytime Radiative Cooling. ACS Applied Materials & Interfaces, 2024, 16(7):9303-9312. DOI:10.1021/acsami.3c18101
  29. WEIWEI F., et al. Synergistic effect of silica aerogel and titanium dioxide in porous polyurethanecomposite coating with enhanced passive radiative cooling performance. Progress in Organic Coatings,2023, 183:107763
  30. FENG K., et al. Passive daytime radiative cooling: from mechanism to materials and applications.Materials Today Energy, 2024, 43: 101575. DOI:10.1016/j.mtener.2024.101575
  31. ZHAO H., et al. Switchable Cavitation in Silicone Coatings for Energy‐Saving Cooling and Heating.Advanced Materials, 2020, 32(29): 2000870. DOI:10.1002/adma.202000870
  32. ONO M., et al. Self-adaptive radiative cooling based on phase change materials. Optics Express, 2018,26(18): A777. DOI:10.1364/OE.26.00A777
  33. KORT-KAMP W. J. M., et al. Passive Radiative "Thermostat" Enabled by Phase-Change PhotonicNanostructures. ACS Photonics, 2018, 5(11): 4554-4560. DOI:10.1021/acsphotonics.8b01026
  34. TAYLOR S., et al. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamicradiative cooling. Solar Energy Materials and Solar Cells, 2020, 217: 110739
  35. GU J., et al. VO2 -Based Infrared Radiation Regulator with Excellent Dynamic Thermal ManagementPerformance. ACS Applied Materials & Interfaces, 2022, 14(2): 2683-2690.DOI:10.1021/acsami.1c17914
  36. WANG S., et al. Scalable thermochromic smart windows with passive radiative cooling regulation.Science, 2021, 374(6574): 1501-1504. DOI:10.1126/science.abg0291
  37. LI J., et al. Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving.Joule, 2023, 7(11): 2552-2567. DOI:10.1016/j.joule.2023.09.011
  38. TANG K., et al. Temperature-adaptive radiative coating for all-season household thermal regulation.Science, 2021, 374(6574): 1504-1509. DOI:10.1126/science.abf7136
  39. TANG H., et al. Both sub-ambient and above-ambient conditions: a comprehensive approach for theefficient use of radiative cooling. Energy & Environmental Science, 2024: 10.1039.D3EE04261H
  40. WANG J., et al. Materials, structures, and devices for dynamic radiative cooling. Cell Reports PhysicalScience, 2022, 3(12): 101198. DOI:10.1016/j.xcrp.2022.101198
  41. WANG J. H., et al. A Superhydrophobic Dual-Mode Film for Energy-Free Radiative Cooling and SolarHeating. ACS Omega, 2022, 7(17): 15247-15257. DOI:10.1021/acsomega.2c01947
  42. SHI M., et al. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-DayRadiative Cooling and Heating. ACS Nano, 2023, 17(3): 2029-2038. DOI:10.1021/acsnano.2c07293
  43. Lin K., et al. Beyond the static: dynamic radiative cooling materials and applications. Materials TodayEnergy. 2024:101647
  44. YANG W., et al. Engineering structural Janus MXene‐nanofibrils aerogels for season‐adaptive radiativethermal regulation. Small. 2023, 19(30):2302509
  45. YANG P., et al. Dual‐Mode Integrated Janus Films with Highly Efficient NaH2PO2‐Enhanced InfraredRadiative Cooling and Solar Heating for Year‐Round Thermal Management. Advanced. Science,2023.10(7):2206176
  46. XIANG B., et al. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermalmanagement. Advanced Fiber Materials, 2022, 4(5): 1058-1068
  47. LI X., et al. Integration of daytime radiative cooling and solar heating for year-round energy saving inbuildings. Nature Communications, 2020, 11(1): 6101. DOI:10.1038/s41467-020-19790-x
  48. LIU Y., et al. Intelligent regulation of VO2-PDMS-driven radiative cooling. Applied Physics Letters,2022, 120(17): 171704. DOI:10.1063/5.0089353
  49. LI X., et al. Strain-adjustable reflectivity of polyurethane nanofiber membrane for thermal managementapplications. Chemical Engineering Journal. 2023, 461:142095
  50. ZYLBERSZTEJN A., MOTT N F. Metal-insulator transition in vanadium dioxide. Physical Review B,1975, 11(11): 4383-4395. DOI:10.1103/PhysRevB.11.4383
  51. SHEN N., et al. Vanadium dioxide for thermochromic smart windows in ambient conditions. MaterialsToday Energy, 2021, 21: 100827. DOI:10.1016/j.mtener.2021.100827
  52. KANG L., et al. A Novel Solution Process for the Synthesis of VO2 Thin Films with ExcellentThermochromic Properties. ACS Applied Materials & Interfaces, 2009, 1(10): 2211-2218.DOI:10.1021/am900375k
  53. GAO Y., et al. Enhanced chemical stability of VO 2 nanoparticles by the formation of SiO 2/VO 2core/shell structures and the application to transparent and flexible VO 2-based composite foils withexcellent thermochromic properties for solar heat control. Energy & Environmental Science.2012;5(3):6104-10
  54. MA S., FAN D.. Adaptive multiple-band absorber based on VO2 metasurface. ES Energy & Environment.2021, 14:63-72
  55. KE Y., et al. Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energyefficientmechano-thermochromic windows. Nano Energy, 2020, 73: 104785
  56. WANG Z., et al. Temperature-adaptive smart windows with passive transmittance and radiative coolingregulation. Applied Energy. 2024, 369:123619
  57. ZHENG S., et al. Preparation of thermochromic coatings and their energy saving analysis. Solar Energy,2015, 112: 263-271. DOI:10.1016/j.solener.2014.09.049
  58. WANG T., et al. Scalable and waterborne titanium-dioxide-free thermochromic coatings for selfadaptivepassive radiative cooling and heating. Cell Reports Physical Science, 2022, 3(3): 100782
  59. WANG X., NARAYAN S. Thermochromic Materials for Smart Windows: A State-of-Art Review.Frontiers in Energy Research, 2021, 9: 800382. DOI:10.3389/fenrg.2021.800382
  60. FANG Z., et al. Thermal Homeostasis Enabled by Dynamically Regulating the Passive RadiativeCooling and Solar Heating Based on a Thermochromic Hydrogel. ACS Photonics, 2021, 8(9): 2781-2790
  61. MEI X., et al. A self-adaptive film for passive radiative cooling and solar heating regulation. Journal ofMaterials Chemistry A, 2022, 10(20): 11092-11100. DOI:10.1039/D2TA01291J
  62. WANG S., et al. Thermochromic smart windows with highly regulated radiative cooling and solartransmission. Nano Energy, 2021, 89: 106440. DOI:10.1016/j.nanoen.2021.106440
  63. CHEN G., et al. Printable Thermochromic Hydrogel‐Based Smart Window for All‐Weather BuildingTemperature Regulation in Diverse Climates. Advanced Materials, 2023, 35(20): 2211716
  64. MANDAL J., et al. Porous Polymers with Switchable Optical Transmittance for Optical and ThermalRegulation. Joule, 2019, 3(12)
  65. FEI J., et al. Switchable Surface Coating for Bifunctional Passive Radiative Cooling and Solar Heating.Advanced Functional Materials, 2022, 32(27): 2203582. DOI:10.1002/adfm.202203582
  66. ZHANG C., et al. Vapor-Liquid Transition‐Based Broadband Light Modulation for Self‐AdaptiveThermal Management. Advanced Functional Materials, 2022, 32(48): 2208144.DOI:10.1002/adfm.202208144
  67. WANG Z., et al. Self-switchable radiative cooling. Matter, 2022, 5(3): 780-782
  68. LONG L., YE H. Dual-intelligent windows regulating both solar and long-wave radiations dynamically.Solar Energy Materials and Solar Cells, 2017, 169: 145-150. DOI:10.1016/j.solmat.2017.05.022
  69. LIN C., et al. All-weather thermochromic windows for synchronous solar and thermal radiationregulation. Science Advances, 2022, 8(17): eabn7359. DOI:10.1126/sciadv.abn7359
  70. VU T. D., et al. Durable vanadium dioxide with 33-year service life for smart windows applications.Materials Today Energy, 2022, 26: 100978. DOI:10.1016/j.mtener.2022.100978
  71. XIA Z., et al. Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials. ACS AppliedMaterials & Interfaces, 2020, 12(24): 27241-27248. DOI:10.1021/acsami.0c05803
  72. RONG L., et al. High-efficiency solar heat storage enabled by adaptive radiation management. CellReports Physical Science, 2021, 2(8)
  73. YANG Z., et al. Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable MultimodalThermal Management. ACS Applied Materials & Interfaces, 2022, 14(21): 24755-24765
  74. TAO S., et al. Mechanically Switchable Multifunctional Device for Regulating Passive RadiativeCooling and Solar Heating. ACS Applied Materials & Interfaces, 2023, 15(13): 17123-17133
  75. GONG H.. Recent progress and advances in electrochromic devices exhibiting infrared modulation.Journal of Materials Chemistry A, 2022
  76. ZHOU S., et al. Recent advances in dynamic dual mode systems for daytime radiative cooling and solarheating. RSC Advances, 2023, 13(45): 31738-31755. DOI:10.1039/D3RA05506J
  77. DENG Y., et al. Ultrafast Switchable Passive Radiative Cooling Smart Windows with SynergisticOptical Modulation. Advanced Functional Materials, 2023, 33(35): 2301319
  78. JIA Z., et al. Electrochromic windows with fast response and wide dynamic range for visible-lightmodulation without traditional electrodes. Nature Communications. 2024, 15(1):6110
  79. Chen M, et al. Advanced Dual‐Band Smart Windows: Inorganic All‐Solid‐State Electrochromic Devicesfor Selective Visible and Near‐Infrared Modulation. Advanced Functional Materials. 2024:2413659
  80. Shao Z., et al. Tri-band electrochromic smart window for energy savings in buildings. NatureSustainability. 2024:1-8
  81. LI S., et al. Self-adaptive energy-efficient windows with enhanced synergistic regulation of broadbandinfrared thermal radiation. Nano Energy, 2024, 129: 110023. DOI:10.1016/j.nanoen.2024.110023
  82. BAETENS R., et al. Properties, requirements and possibilities of smart windows for dynamic daylightand solar energy control in buildings: A state-of-the-art review. Solar energy materials and solar cells.2010, 94(2):87-105
  83. DENG Y., et al. Jia Z, Sui Y, Qian L, Ren X, Zhao Y, Yao R, Wang L, Chao D, Yang C. Electrochromicwindows with fast response and wide dynamic range for visible-light modulation without traditionalelectrodes. Nature Communications. 2024, 15(1):6110
  84. CHEN C., et al. Zero-energy switchable radiative cooler for enhanced building energy efficiency.Journal of Photonics for Energy. 2024, 14(2):028501-
  85. FAN H., et al. Core-Shell Composite Nanofibers with High Temperature Resistance, Hydrophobicityand Breathability for Efficient Daytime Passive Radiative Cooling. Advanced Materials, 2024: 2406987.DOI:10.1002/adma.202406987
  86. LIN K., et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity.Science, 2023, 382(6671): 691-697. DOI:10.1126/science.adi4725
  87. LIN K., et al. Nanoparticle-polymer hybrid dual-layer coating with broadband solar reflection for highperformancedaytime passive radiative cooling. Energy and Buildings, 2022, 276: 112507
  88. MA X., et al. Fluorescence-enhanced light-blue bilayer radiative cooling coatings. Journal of MaterialsChemistry A. 2024;12(32):20921-6
  89. LIANG S., et al. Structural color tunable intelligent mid-infrared thermal control emitter. CeramicsInternational, 2024, 50(13): 23611-23620. DOI:10.1016/j.ceramint.2024.04.085
  90. DING Z., et al. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.Small, 2022, 18(25). DOI:10.1002/smll.202202400
  91. HUANG G., et al. Radiative cooling and indoor light management enabled by a transparent and selfcleaningpolymer-based metamaterial. Nature Communications. 2024, 15(1):3798
  92. LIU B. Y., et al. Bioinspired Superhydrophobic All‐in‐one Coating for Adaptive Thermoregulation.Advanced Materials. 2024, 29:2400745
  93. GAO H., et al. Optical wood with switchable solar transmittance for all-round thermal management.Composites Part B: Engineering, 2024, 275: 111287. DOI:10.1016/j.compositesb.2024.111287
  94. LIU X., et al. Transparent ultrahigh-molecular-weight polyethylene/MXene films with efficient UVabsorptionfor thermal management. Nature Communications, 2024, 15(1): 3076
  95. YU S., et al. Ultrahigh Visible-Transparency, Submicrometer, and Polymer-Free Radiative CoolingMeta-Glass Coating for Building Energy Saving. ACS Photonics. 2024, 11(8):3412-23
  96. JUNG Y., et al. Energy-saving window for versatile multimode of radiative cooling, energy harvesting,and defrosting functionalities. Nano Energy, 2024, 129: 110004. DOI:10.1016/j.nanoen.2024.110004
  97. LIU M., et al. Sustainable All‐Day Thermoelectric Power Generation From the Hot Sun and ColdUniverse. Small, 2024: 2403020. DOI:10.1002/smll.202403020
  98. CHEN Y., et al. Cellulose nanofibers based composite membrane with high solar radiation and heatconduction for agricultural thermal dissipation application. Solar Energy, 2024, 267: 112242
  99. LI J., et al. A photosynthetically active radiative cooling film. Nature Sustainability. 2024, 21:1-0
  100. WANG C., et al. Research on transparent radiant film for greenhouse cooling. Journal of Refrigeration.2024; 45(1): 63-69
  101. WANG C., et al. Enhancing food production in hot climates through radiative cooling mulch: A nexusapproach. Nexus, 2024, 1(1): 100002. DOI:10.1016/j.ynexs.2023.100002