THERMAL SCIENCE
International Scientific Journal
Thermal Science - Online First
online first only
Dynamic radiative cooling: A review of materials for energy-efficient window applications
ABSTRACT
Radiative cooling materials have received enormous attention for their ability to cool below ambient temperature without energy consumption. Unlike conventional radiative cooling systems, which can result in excessive cooling during colder months, dynamic radiative cooling materials can dynamically adjust their thermal radiation properties in response to environmental changes, enabling efficient cooling and heating across different seasons. This review summarizes the recent developments in dynamic radiative cooling materials, focusing on their physical mechanisms, including mechanically assisted films, thermochromic materials, temperature-responsive gels, and solvent-assisted systems. Special attention is given to their applications in energy-efficient building windows and facades. The challenges of scaling dynamic radiative cooling technologies for widespread use and their potential for future development are discussed, with recommendations for improving performance, sustainability, and integration into modern building systems.
KEYWORDS
PAPER SUBMITTED: 2024-12-28
PAPER REVISED: 2025-03-20
PAPER ACCEPTED: 2025-04-11
PUBLISHED ONLINE: 2025-07-05
- GOLDSTEIN E. A., et al. Sub-ambient non-evaporative fluid cooling with the sky. Nature Energy, 2017,2(9): 17143. DOI:10.1038/nenergy.2017.143
- WANG S., MA Z. Supervisory and optimal control of building HVAC systems: A review. Hvac&RResearch, 2008, 14(1): 3-32
- HE M., et al. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recyclingtowards Carbon Neutrality. Angewandte Chemie, 2022, 134(15): e202112835
- LIANG J., et al. Radiative cooling for passive thermal management towards sustainable carbonneutrality. National Science Review, 2023, 10(1): nwac208. DOI:10.1093/nsr/nwac208
- GAO W., CHEN Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. Small,2023, 19(18): 2206145. DOI:10.1002/smll.202206145
- STARK A. K. Methods for rejecting daytime waste heat to outer space. National Science Review, 2017,4(6): 789-790. DOI:10.1093/nsr/nwx052
- ZHU L., et al. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermalblackbody. Proceedings of the National Academy of Sciences, 2015, 112(40): 12282-12287
- CHEN Z., et al. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.Nature Communications, 2016, 7(1): 13729. DOI:10.1038/ncomms13729
- FAN S., RAMAN A. Metamaterials for radiative sky cooling. National Science Review, 2018, 5(2): 132-133
- MA Y. The super-cool materials that send heat to space. Nature. 2020; 577:18-20
- LI Z., et al. Fundamentals, materials, and applications for daytime radiative cooling. AdvancedMaterials Technologies, 2020, 5(5): 1901007
- LI W., FAN S. Radiative Cooling: Harvesting the Coldness of the Universe. Optics and Photonics News,2019, 30(11): 32-39. DOI:10.1364/OPN.30.11.000032
- YU X., et al. Review of radiative cooling materials: Performance evaluation and design approaches.Nano Energy, 2021, 88: 106259. DOI:10.1016/j.nanoen.2021.106259
- LIN K., et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity.Science. 2023; 382(6671):691-7
- RAMAN A. P., et al. Passive radiative cooling below ambient air temperature under direct sunlight.Nature, 2014, 515(7528): 540-544. DOI:10.1038/nature13883
- XUE X., et al. Creating an Eco‐Friendly Building Coating with Smart Subambient Radiative Cooling.Advanced Materials, 2020, 32(42): 1906751. DOI:10.1002/adma.201906751
- LIU R., et al. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.ACS Applied Materials & Interfaces, 2022, 14(41): 46972-46979. DOI:10.1021/acsami.2c12400
- WU Q., et al. Passive daytime radiative cooling coatings with renewable self-cleaning functions.Chinese Chemical Letters, 2024, 35(2): 108687. DOI:10.1016/j.cclet.2023.108687
- ZHOU Z., et al. Transparent Polymer Coatings for Energy-Efficient Daytime Window Cooling. CellReports Physical Science, 2020, 1(11): 100231. DOI:10.1016/j.xcrp.2020.100231
- XU J., et al. All-Day Freshwater Harvesting through Combined Solar-Driven Interfacial Desalinationand Passive Radiative Cooling. ACS Applied Materials & Interfaces, 2020, 12(42): 47612-47622
- WANG X., et al. Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime RadiativeCooling. Advanced Functional Materials, 2020, 30(5): 1907562. DOI:10.1002/adfm.201907562
- LI X., et al. Ultrawhite BaSO 4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling.ACS Applied Materials & Interfaces, 2021, 13(18): 21733-21739. DOI:10.1021/acsami.1c02368
- ZHANG X.., et al. A Moisture-Wicking Passive Radiative Cooling Hierarchical Metafabric. ACS Nano,2022, 16(2): 2188-2197. DOI:10.1021/acsnano.1c08227
- ZENG S, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling.Science. 2021, 373(6555):692-6
- CAI L., et al. Spectrally selective nanocomposite textile for outdoor personal cooling. AdvancedMaterials. 2018, 30(35):1802152
- CAI L., et al. Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles. Joule,2019, 3(6): 1478-1486. DOI:10.1016/j.joule.2019.03.015
- LI T., et al. A radiative cooling structural material. Science, 2019, 364(6442): 760-763.DOI:10.1126/science.aau9101
- HAN D., et al. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate CompositeSiO2 Aerogel Coating for Daytime Radiative Cooling. ACS Applied Materials & Interfaces, 2024, 16(7):9303-9312. DOI:10.1021/acsami.3c18101
- WEIWEI F., et al. Synergistic effect of silica aerogel and titanium dioxide in porous polyurethanecomposite coating with enhanced passive radiative cooling performance. Progress in Organic Coatings,2023, 183:107763
- FENG K., et al. Passive daytime radiative cooling: from mechanism to materials and applications.Materials Today Energy, 2024, 43: 101575. DOI:10.1016/j.mtener.2024.101575
- ZHAO H., et al. Switchable Cavitation in Silicone Coatings for Energy‐Saving Cooling and Heating.Advanced Materials, 2020, 32(29): 2000870. DOI:10.1002/adma.202000870
- ONO M., et al. Self-adaptive radiative cooling based on phase change materials. Optics Express, 2018,26(18): A777. DOI:10.1364/OE.26.00A777
- KORT-KAMP W. J. M., et al. Passive Radiative "Thermostat" Enabled by Phase-Change PhotonicNanostructures. ACS Photonics, 2018, 5(11): 4554-4560. DOI:10.1021/acsphotonics.8b01026
- TAYLOR S., et al. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamicradiative cooling. Solar Energy Materials and Solar Cells, 2020, 217: 110739
- GU J., et al. VO2 -Based Infrared Radiation Regulator with Excellent Dynamic Thermal ManagementPerformance. ACS Applied Materials & Interfaces, 2022, 14(2): 2683-2690.DOI:10.1021/acsami.1c17914
- WANG S., et al. Scalable thermochromic smart windows with passive radiative cooling regulation.Science, 2021, 374(6574): 1501-1504. DOI:10.1126/science.abg0291
- LI J., et al. Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving.Joule, 2023, 7(11): 2552-2567. DOI:10.1016/j.joule.2023.09.011
- TANG K., et al. Temperature-adaptive radiative coating for all-season household thermal regulation.Science, 2021, 374(6574): 1504-1509. DOI:10.1126/science.abf7136
- TANG H., et al. Both sub-ambient and above-ambient conditions: a comprehensive approach for theefficient use of radiative cooling. Energy & Environmental Science, 2024: 10.1039.D3EE04261H
- WANG J., et al. Materials, structures, and devices for dynamic radiative cooling. Cell Reports PhysicalScience, 2022, 3(12): 101198. DOI:10.1016/j.xcrp.2022.101198
- WANG J. H., et al. A Superhydrophobic Dual-Mode Film for Energy-Free Radiative Cooling and SolarHeating. ACS Omega, 2022, 7(17): 15247-15257. DOI:10.1021/acsomega.2c01947
- SHI M., et al. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-DayRadiative Cooling and Heating. ACS Nano, 2023, 17(3): 2029-2038. DOI:10.1021/acsnano.2c07293
- Lin K., et al. Beyond the static: dynamic radiative cooling materials and applications. Materials TodayEnergy. 2024:101647
- YANG W., et al. Engineering structural Janus MXene‐nanofibrils aerogels for season‐adaptive radiativethermal regulation. Small. 2023, 19(30):2302509
- YANG P., et al. Dual‐Mode Integrated Janus Films with Highly Efficient NaH2PO2‐Enhanced InfraredRadiative Cooling and Solar Heating for Year‐Round Thermal Management. Advanced. Science,2023.10(7):2206176
- XIANG B., et al. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermalmanagement. Advanced Fiber Materials, 2022, 4(5): 1058-1068
- LI X., et al. Integration of daytime radiative cooling and solar heating for year-round energy saving inbuildings. Nature Communications, 2020, 11(1): 6101. DOI:10.1038/s41467-020-19790-x
- LIU Y., et al. Intelligent regulation of VO2-PDMS-driven radiative cooling. Applied Physics Letters,2022, 120(17): 171704. DOI:10.1063/5.0089353
- LI X., et al. Strain-adjustable reflectivity of polyurethane nanofiber membrane for thermal managementapplications. Chemical Engineering Journal. 2023, 461:142095
- ZYLBERSZTEJN A., MOTT N F. Metal-insulator transition in vanadium dioxide. Physical Review B,1975, 11(11): 4383-4395. DOI:10.1103/PhysRevB.11.4383
- SHEN N., et al. Vanadium dioxide for thermochromic smart windows in ambient conditions. MaterialsToday Energy, 2021, 21: 100827. DOI:10.1016/j.mtener.2021.100827
- KANG L., et al. A Novel Solution Process for the Synthesis of VO2 Thin Films with ExcellentThermochromic Properties. ACS Applied Materials & Interfaces, 2009, 1(10): 2211-2218.DOI:10.1021/am900375k
- GAO Y., et al. Enhanced chemical stability of VO 2 nanoparticles by the formation of SiO 2/VO 2core/shell structures and the application to transparent and flexible VO 2-based composite foils withexcellent thermochromic properties for solar heat control. Energy & Environmental Science.2012;5(3):6104-10
- MA S., FAN D.. Adaptive multiple-band absorber based on VO2 metasurface. ES Energy & Environment.2021, 14:63-72
- KE Y., et al. Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energyefficientmechano-thermochromic windows. Nano Energy, 2020, 73: 104785
- WANG Z., et al. Temperature-adaptive smart windows with passive transmittance and radiative coolingregulation. Applied Energy. 2024, 369:123619
- ZHENG S., et al. Preparation of thermochromic coatings and their energy saving analysis. Solar Energy,2015, 112: 263-271. DOI:10.1016/j.solener.2014.09.049
- WANG T., et al. Scalable and waterborne titanium-dioxide-free thermochromic coatings for selfadaptivepassive radiative cooling and heating. Cell Reports Physical Science, 2022, 3(3): 100782
- WANG X., NARAYAN S. Thermochromic Materials for Smart Windows: A State-of-Art Review.Frontiers in Energy Research, 2021, 9: 800382. DOI:10.3389/fenrg.2021.800382
- FANG Z., et al. Thermal Homeostasis Enabled by Dynamically Regulating the Passive RadiativeCooling and Solar Heating Based on a Thermochromic Hydrogel. ACS Photonics, 2021, 8(9): 2781-2790
- MEI X., et al. A self-adaptive film for passive radiative cooling and solar heating regulation. Journal ofMaterials Chemistry A, 2022, 10(20): 11092-11100. DOI:10.1039/D2TA01291J
- WANG S., et al. Thermochromic smart windows with highly regulated radiative cooling and solartransmission. Nano Energy, 2021, 89: 106440. DOI:10.1016/j.nanoen.2021.106440
- CHEN G., et al. Printable Thermochromic Hydrogel‐Based Smart Window for All‐Weather BuildingTemperature Regulation in Diverse Climates. Advanced Materials, 2023, 35(20): 2211716
- MANDAL J., et al. Porous Polymers with Switchable Optical Transmittance for Optical and ThermalRegulation. Joule, 2019, 3(12)
- FEI J., et al. Switchable Surface Coating for Bifunctional Passive Radiative Cooling and Solar Heating.Advanced Functional Materials, 2022, 32(27): 2203582. DOI:10.1002/adfm.202203582
- ZHANG C., et al. Vapor-Liquid Transition‐Based Broadband Light Modulation for Self‐AdaptiveThermal Management. Advanced Functional Materials, 2022, 32(48): 2208144.DOI:10.1002/adfm.202208144
- WANG Z., et al. Self-switchable radiative cooling. Matter, 2022, 5(3): 780-782
- LONG L., YE H. Dual-intelligent windows regulating both solar and long-wave radiations dynamically.Solar Energy Materials and Solar Cells, 2017, 169: 145-150. DOI:10.1016/j.solmat.2017.05.022
- LIN C., et al. All-weather thermochromic windows for synchronous solar and thermal radiationregulation. Science Advances, 2022, 8(17): eabn7359. DOI:10.1126/sciadv.abn7359
- VU T. D., et al. Durable vanadium dioxide with 33-year service life for smart windows applications.Materials Today Energy, 2022, 26: 100978. DOI:10.1016/j.mtener.2022.100978
- XIA Z., et al. Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials. ACS AppliedMaterials & Interfaces, 2020, 12(24): 27241-27248. DOI:10.1021/acsami.0c05803
- RONG L., et al. High-efficiency solar heat storage enabled by adaptive radiation management. CellReports Physical Science, 2021, 2(8)
- YANG Z., et al. Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable MultimodalThermal Management. ACS Applied Materials & Interfaces, 2022, 14(21): 24755-24765
- TAO S., et al. Mechanically Switchable Multifunctional Device for Regulating Passive RadiativeCooling and Solar Heating. ACS Applied Materials & Interfaces, 2023, 15(13): 17123-17133
- GONG H.. Recent progress and advances in electrochromic devices exhibiting infrared modulation.Journal of Materials Chemistry A, 2022
- ZHOU S., et al. Recent advances in dynamic dual mode systems for daytime radiative cooling and solarheating. RSC Advances, 2023, 13(45): 31738-31755. DOI:10.1039/D3RA05506J
- DENG Y., et al. Ultrafast Switchable Passive Radiative Cooling Smart Windows with SynergisticOptical Modulation. Advanced Functional Materials, 2023, 33(35): 2301319
- JIA Z., et al. Electrochromic windows with fast response and wide dynamic range for visible-lightmodulation without traditional electrodes. Nature Communications. 2024, 15(1):6110
- Chen M, et al. Advanced Dual‐Band Smart Windows: Inorganic All‐Solid‐State Electrochromic Devicesfor Selective Visible and Near‐Infrared Modulation. Advanced Functional Materials. 2024:2413659
- Shao Z., et al. Tri-band electrochromic smart window for energy savings in buildings. NatureSustainability. 2024:1-8
- LI S., et al. Self-adaptive energy-efficient windows with enhanced synergistic regulation of broadbandinfrared thermal radiation. Nano Energy, 2024, 129: 110023. DOI:10.1016/j.nanoen.2024.110023
- BAETENS R., et al. Properties, requirements and possibilities of smart windows for dynamic daylightand solar energy control in buildings: A state-of-the-art review. Solar energy materials and solar cells.2010, 94(2):87-105
- DENG Y., et al. Jia Z, Sui Y, Qian L, Ren X, Zhao Y, Yao R, Wang L, Chao D, Yang C. Electrochromicwindows with fast response and wide dynamic range for visible-light modulation without traditionalelectrodes. Nature Communications. 2024, 15(1):6110
- CHEN C., et al. Zero-energy switchable radiative cooler for enhanced building energy efficiency.Journal of Photonics for Energy. 2024, 14(2):028501-
- FAN H., et al. Core-Shell Composite Nanofibers with High Temperature Resistance, Hydrophobicityand Breathability for Efficient Daytime Passive Radiative Cooling. Advanced Materials, 2024: 2406987.DOI:10.1002/adma.202406987
- LIN K., et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity.Science, 2023, 382(6671): 691-697. DOI:10.1126/science.adi4725
- LIN K., et al. Nanoparticle-polymer hybrid dual-layer coating with broadband solar reflection for highperformancedaytime passive radiative cooling. Energy and Buildings, 2022, 276: 112507
- MA X., et al. Fluorescence-enhanced light-blue bilayer radiative cooling coatings. Journal of MaterialsChemistry A. 2024;12(32):20921-6
- LIANG S., et al. Structural color tunable intelligent mid-infrared thermal control emitter. CeramicsInternational, 2024, 50(13): 23611-23620. DOI:10.1016/j.ceramint.2024.04.085
- DING Z., et al. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.Small, 2022, 18(25). DOI:10.1002/smll.202202400
- HUANG G., et al. Radiative cooling and indoor light management enabled by a transparent and selfcleaningpolymer-based metamaterial. Nature Communications. 2024, 15(1):3798
- LIU B. Y., et al. Bioinspired Superhydrophobic All‐in‐one Coating for Adaptive Thermoregulation.Advanced Materials. 2024, 29:2400745
- GAO H., et al. Optical wood with switchable solar transmittance for all-round thermal management.Composites Part B: Engineering, 2024, 275: 111287. DOI:10.1016/j.compositesb.2024.111287
- LIU X., et al. Transparent ultrahigh-molecular-weight polyethylene/MXene films with efficient UVabsorptionfor thermal management. Nature Communications, 2024, 15(1): 3076
- YU S., et al. Ultrahigh Visible-Transparency, Submicrometer, and Polymer-Free Radiative CoolingMeta-Glass Coating for Building Energy Saving. ACS Photonics. 2024, 11(8):3412-23
- JUNG Y., et al. Energy-saving window for versatile multimode of radiative cooling, energy harvesting,and defrosting functionalities. Nano Energy, 2024, 129: 110004. DOI:10.1016/j.nanoen.2024.110004
- LIU M., et al. Sustainable All‐Day Thermoelectric Power Generation From the Hot Sun and ColdUniverse. Small, 2024: 2403020. DOI:10.1002/smll.202403020
- CHEN Y., et al. Cellulose nanofibers based composite membrane with high solar radiation and heatconduction for agricultural thermal dissipation application. Solar Energy, 2024, 267: 112242
- LI J., et al. A photosynthetically active radiative cooling film. Nature Sustainability. 2024, 21:1-0
- WANG C., et al. Research on transparent radiant film for greenhouse cooling. Journal of Refrigeration.2024; 45(1): 63-69
- WANG C., et al. Enhancing food production in hot climates through radiative cooling mulch: A nexusapproach. Nexus, 2024, 1(1): 100002. DOI:10.1016/j.ynexs.2023.100002