THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Theoretical and experimental study of a single-pass solar air collector for drying food products

ABSTRACT
This paper involved a theoretical and experimental study of a single-pass solar air collector to supply hot air to a solar dryer. A Fortran code is developed to solve the heat transfer equations and determine the thermal performance of the collector's components, such as the absorber plate, glass cover, and heat transfer air. Three similar solar collectors, installed at different inclination angles (horizontal, 30° inclination, and 70° inclination), were constructed and tested at the Research Unit (URER-MS) in southern Algeria. The effect of the collector's inclination on its thermal performance has been investigated. The results show that the collector's performance is strongly influenced by the inclination angle, with the optimal angle varying according to seasonal conditions. The model validation revealed percentage deviations between theoretical and experimental results across all tested inclination angles as follows: absorber temperature (4.8- 10%), heated air temperature (5.2- 14.8 %), glass cover temperature (10.7 - 17.3 %), and ambient temperature (5.4- 6.4%). These deviation ranges confirm the reasonable accuracy of the theoretical model in predicting system performance under varying operational conditions.
KEYWORDS
PAPER SUBMITTED: 2025-02-13
PAPER REVISED: 2025-03-02
PAPER ACCEPTED: 2025-04-23
PUBLISHED ONLINE: 2025-06-01
DOI REFERENCE: https://doi.org/10.2298/TSCI250213095B
REFERENCES
  1. Swetman, T., Le séchage solaire (Solar drying), Pratical action., Royaume Uni, 2007
  2. Moein Addini, M., Gandjalikhan Nassab, S. A., Numerical simulation of an efficient circular solar air heater integrated with a CPC, Thermal Science and Engineering Progress, 56 (2024), Dec., 103092, doi.org/10.1016/j.tsep.2024.103092
  3. Tchinda, R. A., et al., Review of the mathematical models for predicting solar air heaters systems, Renewable and Sustainable Energy Reviews, 13 (2009), 8, pp.1734-1759, doi.org/10.1016/j.rser.2009.01.008
  4. Kunwer, R., et al., Thermal Characterization of flat plate solar collector using Titanium Dioxide Nanofluid, Process Integration and Optimization for Sustainability, 7 (2023), Jun., pp. 1333-1343, doi.org/10.1007/s41660-023-00345-8
  5. Salhi, M., et al., Experimental and numerical investigation of the incorporation of an air temperature controller for indirect solar dryers, Energy Conversion and Management: X, 23 (2024), Jul., 100658, doi.org/10.1016/j.ecmx.2024.100658
  6. Yang, M., Experimental analysis on thermal performance of a solar air collector with a single pass, Build Environ, 56 (2012), Oct., pp. 361-369, doi.org/10.1016/j.buildenv.2012.04.009
  7. Lingayat, A. B., et al., A review on indirect type solar dryers for agricultural crops - Dryer setup, its performance, energy storage and important highlights, Applied Energy, 258 (2020), 15, 114005, doi.org/10.1016/j.rineng.2024.102877
  8. Shekata, G. D., et al., Recent advancements in indirect solar dryer performance and the associated thermal energy storage, Results in Engineering, 24 (2024), Jan., 102877, doi.org/10.1016/j.apenergy.2019.114005
  9. Lingayat, A. et al., Design, Development and performance of indirect Type solar dryer for Banana drying, Energy Procedia, 109 (2017), pp. 409-416, doi.org/10.1016/j.egypro.2017.03.041
  10. Aissa, W., et al., Performance of solar dryer chamber used for convective drying of Sponge-Cotton, Thermal Science 18 (2014), 2, pp. S451-S462, doi: 10.2298/TSCI110710084A
  11. El-Sebaey, M. S., et al., Proposing novel approach for indirect solar dryer integrated with activefan and passive-chimney: An experimental and analytical investigation, Energy, 304 (2024), Sep., 132215, doi.org/10.1016/j.energy.2024.132215
  12. Hao, W., et al., Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products, Renewable Energy, 127 (2018), pp. 685-696, doi.org/10.1016/j.renene.2018.05.021
  13. El-Bialy, E., et al., Recent developments and cost analysis of different configurations of the solar air heaters, Solar Energy, 265 (2023), 15, 112091, doi.org/10.1016/j.solener.2023.112091
  14. Aouissi, Z., et al., Numerical and experimental study of thermal efficiency of the transversal rectangular baffles with incline angle inside of solar air collector, Energy Sources, 44 (2022), 4, pp. 8921-8942, doi.org/10.1080/15567036.2022.2128474
  15. Patela, V., et al., Effect of channel depth ratio and absorber plate configuration on performance of a solar air heater, Case Studies in Thermal Engineering, 61 (2024), Sep., 104789, doi.org/10.1016/j.csite.2024.104789
  16. Shreyas P., et al., Numerical analysis of a solar air heater with circular perforated absorber plate, Solar Energy, 215 (2021), Fen., pp. 416-433, doi.org/10.1016/j.solener.2020.12.053
  17. Zhang, R., et al., Numerical model and efficiency analysis of finned staggered solar PV/T air collector, Thermal Science, 28 (2024), 2A, pp. 941-960, doi.org/10.2298/TSCI230409179Z
  18. Chabane, F., and Aouissi, Z., Experimental investigations on the thermal efficiency of a solar air collector with transverse rectangular baffles inclined by an angle of 135°, Energy and Built Environment, 5 (2024), 4, pp. 544-555, doi.org/10.1016/j.enbenv.2023.04.004
  19. Romàn, F., and Hensel, O., A comparison of steady-state and transient modelling approaches for the performance prediction of solar air heaters, Energy Conversion and Management: X , 16 (2022), Dec., 100327, doi.org/10.1016/j.ecmx.2022.100327
  20. Hernández, A., Salvo, N., Evaluación computacional de la eficiencia térmica de colectores calentadores de aire. Estudio paramétrico para dos configuraciones, Avances en Energías Renovables y Medio Ambiente, 12 (2008), 1, pp. 93-100
  21. Muster, W., Alaiwi, Y., Experimental investigation of thermal performance of single pass solar collector using high porosity metal foams, Case Studies in Thermal Engineering, 45 (2023), pp. 102879, doi.org/10.1016/j.csite.2023.102879
  22. Selmi, M., et al., Validation of CFD simulation for flat plate solar energy collector, Renewable Energie, 33 (2008), 3, pp. 383-387, doi.org/10.1016/j.renene.2007.02.003
  23. Suresh, M., Drying of mint leaves in forced convection solar dryer, Thermal Science, 23 (2019) 6B, pp. 3941-3949, doi.org/10.2298/TSCI171230303S
  24. Al-Kayiem, H., Tadahmun A. Y., On the natural convection heat transfer in a rectangular passage solar air heater, solar energy, 112 (2015), Feb., pp. 310-318, doi.org/10.1016/j.solener.2014.11.031
  25. Duffie, J. A., Beckman, W. A., Solar Engineering of thermal processes, 5th Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2020
  26. Njomo, D., Michel Daguenet, M., Sensitivity analysis of thermal performances of flat plate solar air heaters, Heat Mass Transfer, 42 (2006), pp. 1065-1081, doi: 10.1007/s00231-005-0063-9
  27. Serth, R. W., Lestina T. G., Process Heat Transfer: Principles Principles, Applications and Rules of Thumb, Second edition, Elsevier, Texas, USA, 2014
  28. Daguenet, M., Les séchoirs solaires théorie et pratique (Solar dryers theory and practice). UNESCO, 1985
  29. Modarresi, J., Hosseinnia, H., Worldwide Daily Optimum Tilt Angle Model to Obtain Maximum Solar Energy, IETE JOURNAL OF RESEARCH, (2020), pp. 1-9, doi.org/10.1080/03772063.2020.1831412
  30. Benghanem, M., Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia, Applied Energy, 88 (2011), 4, pp. 1427-1433, doi:10.1016/j.apenergy.2010.10.001
  31. El-Kassaby M.M., Monthly and daily optimum tilt angle for south facing solar collectors; theoretical model, experimental and empirical correlations, Solar Wind Technol, 5 (1988), pp. 589-596, doi.org/10.1016/0741-983X(88)90054-9
  32. Calabrò, E., An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation, Journal of Renewable Energy, 1 (2013), pp. 1-12, doi.org/10.1155/2013/307547