THERMAL SCIENCE
International Scientific Journal
Thermal Science - Online First
online first only
Amelioration of pool boiling thermal performance utilizing GNP-TiO2 hybrid nanofluid
ABSTRACT
Hydrophobic graphene nanosheets were successfully modified with titanium dioxide to create a pure and stable nanoparticle. The resulting material exhibited improved heat transfer efficiency when used as nanofluid in pool boiling. We prepared graphene nanofluid, titanium dioxide nanofluid, and graphene-titanium dioxide hybrid nanofluid with varying concentrations to investigate their heat transfer characteristics. The heat transfer coefficient of graphene-titanium dioxide hybrid nanofluid is higher than that of water at the same heat flow density, especially in the low heat flow density region( below q=4×105W/m2). Additionally, by employing a high-speed camera, we observed that the hybrid nanofluid displayed shorter bubble generation periods and smaller bubble separation diameters. These findings highlight the exceptional heat transfer performance of the covalently modified and hybridized nanofluid. Overall, our comprehensive testing program confirms the enhanced heat transfer capabilities of this modified nanofluid, positioning it as a promising choice for various heat transfer applications.
KEYWORDS
PAPER SUBMITTED: 2024-10-19
PAPER REVISED: 2025-03-06
PAPER ACCEPTED: 2025-03-07
PUBLISHED ONLINE: 2025-04-05
- MAFFEZZONI C. Boiler-Turbine Dynamics in Power Plant Control[J/OL]. IFAC Proceedings Volumes, 1996, 29(1): 6843-6854
- HUMPLIK T, LEE J, O'HERN S C, et al. Nanostructured materials for water desalination[J/OL]. Nanotechnology, 2011, 22(29): 292001
- MESSER M, ANDERSON K, ZHANG X, et al. Effect of surface roughness on mixed salt crystallization fouling in pool boiling[J/OL]. DESALINATION AND WATER TREATMENT, 2022, 274: 219-229
- POP E. Energy dissipation and transport in nanoscale devices[J/OL]. Nano Research, 2010, 3(3): 147-169
- AYAD F, BENELMIR R, SOUAYED A. CO2 evaporators design for vehicle HVAC operation[J/OL]. Applied Thermal Engineering, 2012, 36: 330-344
- BAHIRAEI M, MAZAHERI N, RIZEHVANDI A. Application of a hybrid nanofluid containing graphene nanoplatelet-platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs[J/OL]. Applied Thermal Engineering, 2019, 149: 588-601
- MAXWELL J. A Treatise on Electricity and Magnetism, I: 1[M]. 1892
- CHOI S U S, EASTMAN J A. Enhancing Thermal Conductivity of Fluids with Nanoparticles[J]
- Xuan Y ; Theory and application of energy transfer in nanofluids[J](in Chinese). China Science:Technical Sciences, 2014(03 vo 44): 269-279
- SUNDAR L S, SHARMA K V, SINGH M K, et al. Hybrid nanofluid preparation, thermal properties, heat transfer and friction factor - A review[J/OL]. Renewable and Sustainable Energy Reviews, 2017, 68: 185-198
- YANG X, LIU Z hua. A Kind of nanofluid Consisting of Surface-Functionalized Nanoparticles[J/OL]. Nanoscale Research Letters, 2010, 5(8): 1324-1328
- PARK S D, BANG I C. Experimental study of a universal CHF enhancement mechanism in nanofluid using hydrodynamic instability[J/OL]. International Journal of Heat and Mass Transfer, 2014, 70: 844-850
- ALI H M, GENEROUS M M, AHMAD F, et al. Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluid[J/OL]. Applied Thermal Engineering, 2017, 113: 1146-1151
- KOLE M, DEY T K. Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluid[J/OL]. International Journal of Thermal Sciences, 2012, 62: 61-70
- KOLE M, DEY T K. Investigations on the pool boiling heat transfer and critical heat flux of ZnOethylene glycol nanofluid[J/OL]. Applied Thermal Engineering, 2012, 37: 112-119
- SHOGHL S N, BAHRAMI M. Experimental investigation on pool boiling heat transfer of ZnO, and CuO water-based nanofluid and effect of surfactant on heat transfer coefficient[J/OL]. International Communications in Heat and Mass Transfer, 2013, 45: 122-129
- LIU Z H, XIONG J G, BAO R. Boiling heat transfer characteristics of nanofluid in a flat heat pipe evaporator with micro-grooved heating surface[J/OL]. International journal of Multiphase Flow, 2007, 33(12): 1284-1295
- NOROUZIPOUR A, ABDOLLAHI A, AFRAND M. Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid[J/OL]. Powder Technology, 2019, 345: 728-738
- BANG I C, HEUNG CHANG S. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool[J/OL]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2407-2419
- DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics of nano-fluids[J/OL]. International Journal of Heat and Mass Transfer, 2003, 46(5): 851-862
- MILANOVA D, KUMAR R. Role of ions in pool boiling heat transfer of pure and silica nanofluid[J/OL]. Applied Physics Letters, 2005, 87(23)
- PARK H, LEE S J, JUNG S Y. X-ray imaging analysis on behaviors of boiling bubbles in nanofluid[J/OL]. International Journal of Heat and Mass Transfer, 2019, 128: 443-449
- NARAYAN G P, ANOOP K B, DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes[J/OL]. JournalL of Applied Physics, 2007, 102(7)
- CHOPKAR M, DAS A K, MANNA I, et al. Pool boiling heat transfer characteristics of ZrO2-water nanofluid from a flat surface in a pool[J/OL]. Heat and Mass Transfer, 2008, 44(8): 999-1004
- SARAFRAZ M M, HORMOZI F. Nucleate pool boiling heat transfer characteristics of dilute Al2O3-ethyleneglycol nanofluid[J/OL]. International Communications in Heat and Mass Transfer, 2014, 58: 96-104
- SARAFRAZ M M, HORMOZI F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluid[J/OL]. International Journal of Thermal Sciences, 2015, 90: 224-237
- BOLUKBASI A, CILOGLU D. Pool boiling heat transfer characteristics of vertical cylinder quenched by SiO2-water nanofluid[J/OL]. International Journal of Thermal Science, 2011, 50(6): 1013-1021
- RASHEED A K, KHALID M, RASHMI W, et al. Graphene based nanofluid and nanolubricants - Review of recent developments[J/OL]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 63: 346-362
- Rohsenow W M .A Method of Correlating Heat Transfer Data for Surface Boiling Liquids[J].trans asme, 1951
- XIANG L, SONG Y, YANG D, et al. Experiments and modeling of boiling heat transfer of GNP nanofluid with metallic elements[J/OL]. Experimental Heat Transfer, 2023: 1-18
- SONG Y, MA X, WANG Y, et al. Amelioration of boiling heat transfer by 3D deposition structure of graphene-silver hybrid nanoparticle[J/OL]. Energy Conversion and Management: X, 2021, 12: 100109
- MA X, SONG Y, WANG Y, et al. Amelioration of pool boiling thermal performance utilizing graphene-silver hybrid nanofluid[J/OL]. Powder Technology, 2022, 397: 117110
- MA X, SONG Y, WANG Y, et al. Experimental study of boiling heat transfer for a novel type of GNP-Fe3O4 hybrid nanofluid blended with different nanoparticles[J/OL]. Powder Technology, 2022, 396: 92-112
- S. Z. Heris, S. G. Etemad, and M. N. Esfahany, "Experimental investigation of metal oxide nanofluid convection heat transfer," J. Math., vol. 1920, p. 181, 2005
- V. S. Korada, S. K. Vandrangi, S. Kamal, and A. A. Minea, "Experimental Studies on the Influence of Metal and Metal Oxide nanofluid Properties on Forced Convection Heat Transfer and Fluid Flow," Adv.New Heat Transfer Fluids, 2017
- XIANG L, SONG Y, YANG D, et al. Boiling mechanism of biphilic surfaces based on Helmholtz instability and Taylor instability[J/OL]. International Journal of Multiphase Flow, 2024: Volume 173