THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Amelioration of pool boiling thermal performance utilizing GNP-TiO2 hybrid nanofluid

ABSTRACT
Hydrophobic graphene nanosheets were successfully modified with titanium dioxide to create a pure and stable nanoparticle. The resulting material exhibited improved heat transfer efficiency when used as nanofluid in pool boiling. We prepared graphene nanofluid, titanium dioxide nanofluid, and graphene-titanium dioxide hybrid nanofluid with varying concentrations to investigate their heat transfer characteristics. The heat transfer coefficient of graphene-titanium dioxide hybrid nanofluid is higher than that of water at the same heat flow density, especially in the low heat flow density region( below q=4×105W/m2). Additionally, by employing a high-speed camera, we observed that the hybrid nanofluid displayed shorter bubble generation periods and smaller bubble separation diameters. These findings highlight the exceptional heat transfer performance of the covalently modified and hybridized nanofluid. Overall, our comprehensive testing program confirms the enhanced heat transfer capabilities of this modified nanofluid, positioning it as a promising choice for various heat transfer applications.
KEYWORDS
PAPER SUBMITTED: 2024-10-19
PAPER REVISED: 2025-03-06
PAPER ACCEPTED: 2025-03-07
PUBLISHED ONLINE: 2025-04-05
DOI REFERENCE: https://doi.org/10.2298/TSCI241019063S
REFERENCES
  1. MAFFEZZONI C. Boiler-Turbine Dynamics in Power Plant Control[J/OL]. IFAC Proceedings Volumes, 1996, 29(1): 6843-6854
  2. HUMPLIK T, LEE J, O'HERN S C, et al. Nanostructured materials for water desalination[J/OL]. Nanotechnology, 2011, 22(29): 292001
  3. MESSER M, ANDERSON K, ZHANG X, et al. Effect of surface roughness on mixed salt crystallization fouling in pool boiling[J/OL]. DESALINATION AND WATER TREATMENT, 2022, 274: 219-229
  4. POP E. Energy dissipation and transport in nanoscale devices[J/OL]. Nano Research, 2010, 3(3): 147-169
  5. AYAD F, BENELMIR R, SOUAYED A. CO2 evaporators design for vehicle HVAC operation[J/OL]. Applied Thermal Engineering, 2012, 36: 330-344
  6. BAHIRAEI M, MAZAHERI N, RIZEHVANDI A. Application of a hybrid nanofluid containing graphene nanoplatelet-platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs[J/OL]. Applied Thermal Engineering, 2019, 149: 588-601
  7. MAXWELL J. A Treatise on Electricity and Magnetism, I: 1[M]. 1892
  8. CHOI S U S, EASTMAN J A. Enhancing Thermal Conductivity of Fluids with Nanoparticles[J]
  9. Xuan Y ; Theory and application of energy transfer in nanofluids[J](in Chinese). China Science:Technical Sciences, 2014(03 vo 44): 269-279
  10. SUNDAR L S, SHARMA K V, SINGH M K, et al. Hybrid nanofluid preparation, thermal properties, heat transfer and friction factor - A review[J/OL]. Renewable and Sustainable Energy Reviews, 2017, 68: 185-198
  11. YANG X, LIU Z hua. A Kind of nanofluid Consisting of Surface-Functionalized Nanoparticles[J/OL]. Nanoscale Research Letters, 2010, 5(8): 1324-1328
  12. PARK S D, BANG I C. Experimental study of a universal CHF enhancement mechanism in nanofluid using hydrodynamic instability[J/OL]. International Journal of Heat and Mass Transfer, 2014, 70: 844-850
  13. ALI H M, GENEROUS M M, AHMAD F, et al. Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluid[J/OL]. Applied Thermal Engineering, 2017, 113: 1146-1151
  14. KOLE M, DEY T K. Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluid[J/OL]. International Journal of Thermal Sciences, 2012, 62: 61-70
  15. KOLE M, DEY T K. Investigations on the pool boiling heat transfer and critical heat flux of ZnOethylene glycol nanofluid[J/OL]. Applied Thermal Engineering, 2012, 37: 112-119
  16. SHOGHL S N, BAHRAMI M. Experimental investigation on pool boiling heat transfer of ZnO, and CuO water-based nanofluid and effect of surfactant on heat transfer coefficient[J/OL]. International Communications in Heat and Mass Transfer, 2013, 45: 122-129
  17. LIU Z H, XIONG J G, BAO R. Boiling heat transfer characteristics of nanofluid in a flat heat pipe evaporator with micro-grooved heating surface[J/OL]. International journal of Multiphase Flow, 2007, 33(12): 1284-1295
  18. NOROUZIPOUR A, ABDOLLAHI A, AFRAND M. Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid[J/OL]. Powder Technology, 2019, 345: 728-738
  19. BANG I C, HEUNG CHANG S. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool[J/OL]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2407-2419
  20. DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics of nano-fluids[J/OL]. International Journal of Heat and Mass Transfer, 2003, 46(5): 851-862
  21. MILANOVA D, KUMAR R. Role of ions in pool boiling heat transfer of pure and silica nanofluid[J/OL]. Applied Physics Letters, 2005, 87(23)
  22. PARK H, LEE S J, JUNG S Y. X-ray imaging analysis on behaviors of boiling bubbles in nanofluid[J/OL]. International Journal of Heat and Mass Transfer, 2019, 128: 443-449
  23. NARAYAN G P, ANOOP K B, DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes[J/OL]. JournalL of Applied Physics, 2007, 102(7)
  24. CHOPKAR M, DAS A K, MANNA I, et al. Pool boiling heat transfer characteristics of ZrO2-water nanofluid from a flat surface in a pool[J/OL]. Heat and Mass Transfer, 2008, 44(8): 999-1004
  25. SARAFRAZ M M, HORMOZI F. Nucleate pool boiling heat transfer characteristics of dilute Al2O3-ethyleneglycol nanofluid[J/OL]. International Communications in Heat and Mass Transfer, 2014, 58: 96-104
  26. SARAFRAZ M M, HORMOZI F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluid[J/OL]. International Journal of Thermal Sciences, 2015, 90: 224-237
  27. BOLUKBASI A, CILOGLU D. Pool boiling heat transfer characteristics of vertical cylinder quenched by SiO2-water nanofluid[J/OL]. International Journal of Thermal Science, 2011, 50(6): 1013-1021
  28. RASHEED A K, KHALID M, RASHMI W, et al. Graphene based nanofluid and nanolubricants - Review of recent developments[J/OL]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 63: 346-362
  29. Rohsenow W M .A Method of Correlating Heat Transfer Data for Surface Boiling Liquids[J].trans asme, 1951
  30. XIANG L, SONG Y, YANG D, et al. Experiments and modeling of boiling heat transfer of GNP nanofluid with metallic elements[J/OL]. Experimental Heat Transfer, 2023: 1-18
  31. SONG Y, MA X, WANG Y, et al. Amelioration of boiling heat transfer by 3D deposition structure of graphene-silver hybrid nanoparticle[J/OL]. Energy Conversion and Management: X, 2021, 12: 100109
  32. MA X, SONG Y, WANG Y, et al. Amelioration of pool boiling thermal performance utilizing graphene-silver hybrid nanofluid[J/OL]. Powder Technology, 2022, 397: 117110
  33. MA X, SONG Y, WANG Y, et al. Experimental study of boiling heat transfer for a novel type of GNP-Fe3O4 hybrid nanofluid blended with different nanoparticles[J/OL]. Powder Technology, 2022, 396: 92-112
  34. S. Z. Heris, S. G. Etemad, and M. N. Esfahany, "Experimental investigation of metal oxide nanofluid convection heat transfer," J. Math., vol. 1920, p. 181, 2005
  35. V. S. Korada, S. K. Vandrangi, S. Kamal, and A. A. Minea, "Experimental Studies on the Influence of Metal and Metal Oxide nanofluid Properties on Forced Convection Heat Transfer and Fluid Flow," Adv.New Heat Transfer Fluids, 2017
  36. XIANG L, SONG Y, YANG D, et al. Boiling mechanism of biphilic surfaces based on Helmholtz instability and Taylor instability[J/OL]. International Journal of Multiphase Flow, 2024: Volume 173