THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Study on the performance of semiconductor thermoelectric generator system driven by salt gradient solar pond

ABSTRACT
The performance of a semiconductor thermoelectric generator system based on the Lower Convective Zone of a salt gradient solar pond and ambient has been studied numerically and experimentally. According to the numerically solar pond temperature development results, the temperature differential range of the thermoelectric generator system ranges from 14 to 36°C. The numerically results show that, with a load resistance of 2Ω for each thermoelectric generator unit, among the four days selected, the temperature difference power generation system had the highest output power and conversion efficiency of 4.66W and 2.95%, respectively, on October 1st. Based on the numerical results of the temperature developments salt gradient solar pond, thermoelectric power generation experimental setup which operates under adjustable hot and cold reservoirs has been constructed. The experimental device runs under the conditions that the cold side temperatures of thermoelectric generator are 10°C, 24°C, and 38°C, and the load resistance is 10Ω. The maximum current is 0.149 A, 0.159 A and 0.124 A, the maximum voltage is 1.49 V, 1.59 V and 1.24 V, respectively. The average deviations between the theoretical results and the experimental results of the current and voltage generated by the power generation system are 0.026 A, 0.023 A, 0.012 A and 0.26 V, 0.23 V, 0.12 V, respectively.
KEYWORDS
PAPER SUBMITTED: 2024-03-04
PAPER REVISED: 2024-04-07
PAPER ACCEPTED: 2024-05-04
PUBLISHED ONLINE: 2024-08-31
DOI REFERENCE: https://doi.org/10.2298/TSCI240304191M
REFERENCES
  1. SHAH N-U-H, ARSHAD A, KHOSA AZHAR A, et al. Thermal analysis of a mini solar pond of small surface area while extracting heat from lower convective layer, THERMAL SCIENCE,2019, 23(2A), pp. 763-776, DOI: doi.org/10.2298/TSCI170129166S
  2. SOGUKPINAR H, BOZKURT I, KARAKILCIK M. Performance comparison of aboveground and underground solar ponds, THERMAL SCIENCE, 2018, 22(2), pp. 953-961, DOI: doi.org/10.2298/TSCI160613269S
  3. EL-SEBAII A A, RAMADAN M R I, ABOUL-ENEIN S, et al. History of the solar ponds: A review study, Renewable and Sustainable Energy Reviews, 2011, 15(6), pp. 3319-25,DOI: doi.org/10.1016/J.rser.2011.04.008
  4. PRAJAPATI S, MEHTA N, YADAV S. An overview of factors affecting salt gradient solar ponds, Materials Today: Proceedings, 2022, 56, pp. 2742-52,DOI: doi.org/10.1016/J.matpr.2021.09.538
  5. BOZKURT I. The investigation of using phase change material for solar pond insulation, THERMAL SCIENCE, 2022, 26(2C): pp.1799-1808, DOI:doi.org/10.2298/TSCI210309185B
  6. DING L C, AKBARZADEH A, SINGH B, et al. Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction, Energy Conversion and Management, 2017, 135,pp. 74-83, DOI: doi.org/10.1016/J.enconman.2016.12.069
  7. ATALAY T, YAKUT Y, KöYSAL Y, et al. Experimental and Thermal Analysis of Solar Thermoelectric System Performance Incorporated with Solar Tracker, International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 9(2),pp. 587-602, DOI:doi.org/10.1016/J.applthermaleng.2023.121834
  8. DING L C, AKBARZADEH A, DATE A, et al. Passive small scale electric power generation using thermoelectric cells in solar pond, Energy, 2016, 117,pp. 149-65, DOI:doi.org/10.1016/J.energy.2016.10.085
  9. GOSWAMI R, DAS R. Experimental analysis of a novel solar pond driven thermoelectric energy system, Journal of Energy Resources Technology, 2020, 142(12), DOI: doi.org/10.1016/J.iJheatmasstransfer.2020.120844
  10. YAKUT Y, ÖZBEKTAŞ S, KöYSAL Y, et al. Experımental investıgatıon and mathematıcal modelıng of a novel solar thermoelectrıc generator incorporated with thermal condensing system, Applied Thermal Engineering, 2024, 236, DOI: doi.org/10.1016/J.applthermaleng.2023.121834
  11. MANSOUR R B, NGUYEN C T, GALANIS N. Transient heat and mass transfer and long-term stability of a salt-gradient solar pond, Mechanics Research Communications, 2006, 33(2), pp. 233-49, DOI: doi.org/10.1016/J.mechrescom.2005.06.005
  12. GIESTAS M, PINA H, JOYCE A. The influence of radiation absorption on solar pond stability, International Journal of Heat and Mass Transfer, 1996, 39(18), pp.3873-85, DOI: doi.org/10.1016/0017-9310(96)00052-X
  13. WANG H, WU Q, MEI Y, et al. A study on exergetic performance of using porous media in the salt gradient solar pond, Applied Thermal Engineering, 2018, 136,pp. 301-8, DOI: doi.org/10.1016/J.applthermaleng.2018.03.025
  14. H.F. Zhang, Solar Energy Thermal Application and Simulation, (Eds.: Y.C. Zhang), Xi'an Jiao Tong University Press Co., LTD., Xi'an,China, 2012
  15. WANG H, ZOU J, CORTINA J L, et al. Experimental and theoretical study on temperature distribution of adding coal cinder to bottom of salt gradient solar pond, Solar Energy, 2014, 110,pp.756-67, DOI: doi.org/10.1016/J.solener.2014.10.018
  16. JAEFARZADEH M R. Thermal behavior of a small salinity-gradient solar pond with wall shading effect, Solar Energy, 2004, 77(3),pp. 281-90, DOI: doi.org/10.1016/J.solener.2004.05.013
  17. DING L C, AKBARZADEH A, DATE A. Performance and reliability of commercially available thermoelectric cells for power generation, Applied Thermal Engineering, 2016, 102, pp.548-56,DOI: doi.org/10.1016/J.applthermaleng.2016.04.001
  18. CHEN W-H, LIN Y-X, WANG X-D, et al. A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties, Applied Energy, 2019, 241,pp.11-24,DOI: doi.org/10.1016/J.apenergy.2019.02.083
  19. LI K, GARRISON G, MOORE M, et a l. An expandable thermoelectric power generator and the experimental studies on power output, International Journal of Heat and Mass Transfer, 2020, 160, DOI: doi.org/10.1016/J.iJheatmasstransfer.2020.120205
  20. TAN G, ZHAO L-D, KANATZIDIS M G. Rationally Designing High-Performance Bulk Thermoelectric Materials, Chemical Reviews, 2016, 116(19),pp. 12123-49, DOI: doi.org/10.1021/acs.chemrev.6b00255
  21. MA Z, WEI J, SONG P, et al. Review of experimental approaches for improving zT of thermoelectric materials, Materials Science in Semiconductor Processing, 2021, 121, DOI: doi.org/10.1016/J.mssp.2020.105303
  22. CHEN Y, HOU X, MA C, et al. Review of Development Status of Bi2Te3-Based Semiconductor Thermoelectric Power Generation, Advances in Materials Science and Engineering, 2018, pp.1-9,DOI: doi.org/10.1155/2018/1210562