THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Short review on thermal conductivity of silicon nitride ceramics

ABSTRACT
One of the most promising substrate materials for the next-generation power devices with high thermal conductivity is silicon nitride (Si3N4). There are several ways to improve thermal conductivity of Si3N4. Substantially higher thermal conductivities for the Si3N4 ceramics could be attained by reduction of lattice oxygen content or by the increasing the β/α phase ratio during nitridation thus enhancing grain growth during post-sintering. The method of purification of the grains and decreasing the two-grain junction films by adding large β-Si3N4 grains to the raw Si3N4 powder, seeding by grain growth of Si3N4 crystals in polycrystalline ceramics also improves thermal conductivity. High thermal conductivity can be further achieved by development a textured microstructure in which elongated β-Si3N4 grains are oriented almost unidirectionally. This paper summarizes the extrinsic factors governing the thermal conductivity of Si3N4 ceramic regarding microstructural parameters such as lattice defects in single-crystal, sintering additives, change in microstructural parameters like α/β ratio, grain size, aspect ratio, grain orientation and the morphology, composition of grain-boundary, secondary phases, processing method.
KEYWORDS
PAPER SUBMITTED: 2024-06-15
PAPER REVISED: 2024-08-21
PAPER ACCEPTED: 2024-08-23
PUBLISHED ONLINE: 2024-08-24
DOI REFERENCE: https://doi.org/10.2298/TSCI240615187S
REFERENCES
  1. R. Grün, The crystal structure of β-Si\sb 3N\sb 4: structural and stability considerations between α- and β-Si\sb 3N\sb 4, Acta Crystallographica Section B 35 (1979) 800-804. doi.org/10.1107/S0567740879004933
  2. R. Riedel, I.-W. Chen, eds., Ceramics science and technology, Wiley-VCH, Weinheim, 2008
  3. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueß, P. Kroll, R. Boehler, Synthesis of cubic silicon nitride, Nature 400 (1999) 340-342. doi.org/10.1038/22493
  4. F.L. Riley, Silicon Nitride and Related Materials, Journal of the American Ceramic Society 83 (2000) 245-265. doi.org/10.1111/j.1151-2916.2000.tb01182.x
  5. C. Alexander, C. Prombo, P. Swan, R. Walker, SiC, and Si3N4 in Qingzhen (EH3), in: 1991
  6. C.M.O. Alexander, P. Swan, C.A. Prombo, Occurrence and implications of silicon nitride in enstatite chondrites, Meteoritics 29 (1994) 79-85. doi.org/10.1111/j.1945-5100.1994.tb00656.x
  7. J. Stone, I.D. Hutcheon, S. Epstein, G.J. Wasserburg, Correlated Si isotope anomalies and large13C enrichments in a family of exotic SiC grains, Earth and Planetary Science Letters 107 (1991) 570-581. doi.org/10.1016/0012-821X(91)90102-N
  8. M.R. Lee, S.S. Russell, J.W. Arden, C.T. Pillinger, Nierite (Si3N4), a new mineral from ordinary and enstatite chondrites, Meteoritics 30 (1995) 387-398. doi.org/10.1111/j.1945-5100.1995.tb01142.x
  9. K. Hirao, K. Watari, H. Hayashi, M. Kitayama, High Thermal Conductivity Silicon Nitride Ceramic, MRS Bull. 26 (2001) 451-455. doi.org/10.1557/mrs2001.115
  10. N.P. Padture, In Situ ‐Toughened Silicon Carbide, Journal of the American Ceramic Society 77 (1994) 519-523. doi.org/10.1111/j.1151-2916.1994.tb07024.x
  11. F.F. Lange, Fracture Toughness of Si 3 N 4 as a Function of the Initial α‐Phase Content, Journal of the American Ceramic Society 62 (1979) 428-430. doi.org/10.1111/j.1151-2916.1979.tb19096.x
  12. G.A. Slack, Nonmetallic crystals with high thermal conductivity, Journal of Physics and Chemistry of Solids 34 (1973) 321-335. doi.org/10.1016/0022-3697(73)90092-9
  13. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, The intrinsic thermal conductivity of AIN, Journal of Physics and Chemistry of Solids 48 (1987) 641-647. doi.org/10.1016/0022-3697(87)90153-3
  14. X. Zhu, H. Hayashi, Y. Zhou, K. Hirao, Influence of additive composition on thermal and mechanical properties of β-Si 3 N 4 ceramics, J. Mater. Res. 19 (2004) 3270-3278. doi.org/10.1557/JMR.2004.0416
  15. X. Zhu, Y. Zhou, K. Hirao, T. Ishigaki, Y. Sakka, Potential use of only Yb 2 O 3 in producing dense Si 3 N 4 ceramics with high thermal conductivity by gas pressure sintering, Science and Technology of Advanced Materials 11 (2010) 065001. doi.org/10.1088/1468-6996/11/6/065001
  16. J.-M. Kim, S.-I. Ko, H.-N. Kim, J.-W. Ko, J.-W. Lee, H.-D. Kim, Y.-J. Park, Effects of microstructure and intergranular glassy phases on thermal conductivity of silicon nitride, Ceramics International 43 (2017) 5441-5449. doi.org/10.1016/j.ceramint.2017.01.037
  17. H. Yokota, M. Ibukiyama, Effect of lattice impurities on the thermal conductivity of β-Si3N4, Journal of the European Ceramic Society 23 (2003) 55-60. doi.org/10.1016/S0955-2219(02)00074-2
  18. H. Yokota, S. Yamada, M. Ibukiyama, Effect of large β-Si3N4 particles on the thermal conductivity of β-Si3N4 ceramics, Journal of the European Ceramic Society 23 (2003) 1175-1182. doi.org/10.1016/S0955-2219(02)00291-1
  19. M. Kitayama, K. Hirao, A. Tsuge, M. Toriyama, S. Kanzaki, Oxygen Content in ß‐Si3N4 Crystal Lattice, Journal of the American Ceramic Society 82 (1999) 3263-3265. doi.org/10.1111/j.1151-2916.1999.tb02238.x
  20. C. Yang, Q. Liu, B. Zhang, J. Ding, Y. Jin, F. Ye, Z. Zhang, L. Gao, Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics, Ceramics International 45 (2019) 12757-12763. doi.org/10.1016/j.ceramint.2019.03.183
  21. W. Dressler, R. Riedel, Progress in silicon-based non-oxide structural ceramics, International Journal of Refractory Metals and Hard Materials 15 (1997) 13-47. doi.org/10.1016/S0263-4368(96)00046-7
  22. N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata, Y. Akimune, Thermal Conductivity of Gas‐Pressure‐Sintered Silicon Nitride, Journal of the American Ceramic Society 79 (1996) 2878-2882. doi.org/10.1111/j.1151-2916.1996.tb08721.x
  23. K. Watari, Y. Seki, K. Ishizaki, Temperature Dependence of Thermal Coefficients for HIPped Silicon Nitride, J. Ceram. Soc. Japan 97 (1989) 174-181. doi.org/10.2109/jcersj.97.174
  24. M. Kitayama, K. Hirao, A. Tsuge, M. Toriyama, S. Kanzaki, Oxygen Content in ß‐Si3N4 Crystal Lattice, Journal of the American Ceramic Society 82 (1999) 3263-3265. doi.org/10.1111/j.1151-2916.1999.tb02238.x
  25. M. Kitayama, K. Hirao, A. Tsuge, K. Watari, M. Toriyama, S. Kanzaki, Thermal Conductivity of β-Si3N4: II, Effect of Lattice Oxygen, Journal of the American Ceramic Society 83 (2000) 1985-1992. doi.org/10.1111/j.1151-2916.2000.tb01501.x
  26. H. Yokota, H. Abe, M. Ibukiyama, Effect of lattice defects on the thermal conductivity of β-Si3N4, Journal of the European Ceramic Society 23 (2003) 1751-1759. doi.org/10.1016/S0955-2219(02)00374-6
  27. Y. Akimune, F. Munakata, K. Matsuo, N. Hirosaki, Y. Okamoto, K. Misono, Raman Spectroscopic Analysis of Structural Defects in Hot Isostatically Pressed Silicon Nitride., J. Ceram. Soc. Japan 107 (1999) 339-342. doi.org/10.2109/jcersj.107.339
  28. N. Hirosaki, T. Saito, F. Munakata, Y. Akimune, Y. Ikuhara, Transmission electron microscopy observation of second-phase particles in β-Si3N4 grains, Journal of Materials Research 14 (1999) 2959-2965. doi.org/10.1557/JMR.1999.0396
  29. K. Watari, High Thermal Conductivity Non-Oxide Ceramics., J. Ceram. Soc. Japan 109 (2001) S7-S16. doi.org/10.2109/jcersj.109.S7
  30. Y. Okamoto, N. Hirosaki, M. Ando, F. Munakata, Y. Akimune, Effect of sintering additive composition on the thermal conductivity of silicon nitride, J. Mater. Res. 13 (1998) 3473-3477. doi.org/10.1557/JMR.1998.0474
  31. Y. Lin, X.-S. Ning, H. Zhou, K. Chen, R. Peng, W. Xu, Study on the thermal conductivity of silicon nitride ceramics with magnesia and yttria as sintering additives, Materials Letters 57 (2002) 15-19. doi.org/10.1016/S0167-577X(02)00690-0
  32. H.-J. Yeom, Y.-W. Kim, K.J. Kim, Electrical, thermal and mechanical properties of silicon carbide-silicon nitride composites sintered with yttria and scandia, Journal of the European Ceramic Society 35 (2015) 77-86. doi.org/10.1016/j.jeurceramsoc.2014.08.011
  33. Y. Duan, J. Zhang, X. Li, H. Bai, P. Sajgalik, D. Jiang, High thermal conductivity silicon nitride ceramics prepared by pressureless sintering with ternary sintering additives, Int J Applied Ceramic Tech 16 (2019) 1399-1406. doi.org/10.1111/ijac.13220
  34. T. Lu, T. Wang, Y. Jia, M. Ding, Y. Shi, J. Xie, F. Lei, L. Zhang, L. Fan, Fabrication of high thermal conductivity silicon nitride ceramics by pressureless sintering with MgO and Y2O3 as sintering additives, Ceramics International 46 (2020) 27175-27183. doi.org/10.1016/j.ceramint.2020.07.198
  35. K. Watari, M.E. Brito, M. Toriyama, K. Ishizaki, S. Cao, K. Mori, Thermal conductivity of Y2O3-doped Si3N4 ceramic at 4 to 1000 K, Journal of Materials Science Letters 18 (1999) 865-867. doi.org/10.1023/A:1006696126661
  36. H. Yokota, M. Ibukiyama, Microstructure Tailoring for High Thermal Conductivity of β-Si3N4 Ceramics, Journal of the American Ceramic Society 86 (2003) 197-199. doi.org/10.1111/j.1151-2916.2003.tb03305.x
  37. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, S. Kanzaki, Thermal conductivity of beta-Si(3)N(4): III, effect of rare-earth (RE = La, Nd, Cd, Y, Yb, and Sc) oxide additives, Journal of the American Ceramic Society 84 (2001) 353-358
  38. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, S. Kanzaki, Thermal conductivity of beta-Si(3)N(4): III, effect of rare-earth (RE = La, Nd, Cd, Y, Yb, and Sc) oxide additives, Journal of the American Ceramic Society 84 (2001) 353-358
  39. M. Kitayama, K. Hirao, M. Toriyama, S. Kanzaki, Thermal Conductivity of ß‐Si3N4: I, Effects of Various Microstructural Factors, Journal of the American Ceramic Society 82 (1999) 3105-3112. doi.org/10.1111/j.1151-2916.1999.tb02209.x
  40. A. Thomas, G. Müller, Determination of the concentration of oxygen dissolved in the AlN lattice by hot gas extraction from AlN ceramics, Journal of the European Ceramic Society 8 (1991) 11-19. doi.org/10.1016/0955-2219(91)90087-G
  41. H. Kleebe, M.K. Cinibulk, R.M. Cannon, M. Rüble, Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics, Journal of the American Ceramic Society 76 (1993) 1969-1977. doi.org/10.1111/j.1151-2916.1993.tb08319.x
  42. V.R. Raghavan, H. Martin, Modelling of two-phase thermal conductivity, Chemical Engineering and Processing: Process Intensification 34 (1995) 439-446. doi.org/10.1016/0255-2701(94)00577-X
  43. H. Hayashi, K. Hirao, M. Toriyama, S. Kanzaki, K. Itatani, MgSiN2 Addition as a Means of Increasing the Thermal Conductivity of β-Silicon Nitride, Journal of the American Ceramic Society 84 (2001) 3060-3062. doi.org/10.1111/j.1151-2916.2001.tb01141.x
  44. T.B. Jackson, A.V. Virkar, K.L. More, R.B. Dinwiddie, R.A. Cutler, High‐Thermal‐Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors, Journal of the American Ceramic Society 80 (1997) 1421-1435. doi.org/10.1111/j.1151-2916.1997.tb03000.x
  45. X. Zhu, H. Hayashi, Y. Zhou, K. Hirao, Influence of additive composition on thermal and mechanical properties of β-Si ₃ N ₄ ceramics, J. Mater. Res. 19 (2004) 3270-3278. doi.org/10.1557/JMR.2004.0416
  46. X. Zhu, Y. Zhou, K. Hirao, Z. Lenčéš, Processing and Thermal Conductivity of Sintered Reaction‐Bonded Silicon Nitride: (II) Effects of Magnesium Compound and Yttria Additives, Journal of the American Ceramic Society 90 (2007) 1684-1692. doi.org/10.1111/j.1551-2916.2006.01462.x
  47. X.W. Zhu, Y. Sakka, Y. Zhou, K. Hirao, K. Itatani, A strategy for fabricating textured silicon nitride with enhanced thermal conductivity, Journal of the European Ceramic Society 34 (2014) 2585-2589. doi.org/10.1016/j.jeurceramsoc.2014.01.025
  48. Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, K. Hirao, A Tough Silicon Nitride Ceramic with High Thermal Conductivity, Advanced Materials 23 (2011) 4563-4567. doi.org/10.1002/adma.201102462
  49. J.H. Kong, H.J. Ma, W.K. Jung, J. Hong, K. Jun, D.K. Kim, Self-reinforced and high-thermal conductivity silicon nitride by tailoring α-β phase ratio with pressureless multi-step sintering, Ceramics International 47 (2021) 13057-13064. doi.org/10.1016/j.ceramint.2021.01.169
  50. K. Watari, K. Hirao, M. Toriyama, K. Ishizaki, Effect of Grain Size on the Thermal Conductivity of Si3N4, (n.d.)
  51. Y. Zhou, X. Zhu, K. Hirao, Z. Lences, Sintered Reaction‐Bonded Silicon Nitride with High Thermal Conductivity and High Strength, Int J Applied Ceramic Tech 5 (2008) 119-126. doi.org/10.1111/j.1744-7402.2008.02187.x
  52. A.J. Moulson, Reaction-bonded silicon nitride: its formation and properties, Journal of Materials Science 14 (1979) 1017-1051. doi.org/10.1007/BF00561287
  53. J. Haggerty, A. Lightfoot, Opportunities for Enhancing the Thermal Conductivity of SiC and Si3N4 Ceramics Through Improved Processing, in: Ceramic Engineering and Science Proceedings, 2008: pp. 475-487. doi.org/10.1002/9780470314715.ch52
  54. X. Zhu, Y. Zhou, K. Hirao, Effect of Sintering Additive Composition on the Processing and Thermal Conductivity of Sintered Reaction‐Bonded Si ₃ N ₄, Journal of the American Ceramic Society 87 (2004) 1398-1400. doi.org/10.1111/j.1151-2916.2004.tb07747.x
  55. X. Zhu, Y. Zhou, K. Hirao, Z. Lenčéš, Processing and Thermal Conductivity of Sintered Reaction‐Bonded Silicon Nitride. I: Effect of Si Powder Characteristics, Journal of the American Ceramic Society 89 (2006) 3331-3339. doi.org/10.1111/j.1551-2916.2006.01195.x
  56. X. Zhu, Y. Zhou, K. Hirao, Z. Lenčéš, Processing and Thermal Conductivity of Sintered Reaction‐Bonded Silicon Nitride: (II) Effects of Magnesium Compound and Yttria Additives, Journal of the American Ceramic Society 90 (2007) 1684-1692. doi.org/10.1111/j.1551-2916.2006.01462.x
  57. K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, D. Kusano, High Thermal Conductivity Silicon Nitride Ceramics, Journal of the Korean Ceramic Society 49 (2012) 380-384. doi.org/10.4191/kcers.2012.49.4.380
  58. Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, T. Ohji, K. Hirao, Development of high-thermal-conductivity silicon nitride ceramics, Journal of Asian Ceramic Societies 3 (2015) 221-229. doi.org/10.1016/j.jascer.2015.03.003
  59. K. Hirao, K. Watari, H. Hayashi, M. Kitayama, High Thermal Conductivity Silicon Nitride Ceramic, MRS Bull. 26 (2001) 451-455. doi.org/10.1557/mrs2001.115
  60. Y. Okamoto, N. Hirosaki, M. Ando, F. Munakata, Y. Akimune, Effect of sintering additive composition on the thermal conductivity of silicon nitride, J. Mater. Res. 13 (1998) 3473-3477. doi.org/10.1557/JMR.1998.0474
  61. H. Yokota, M. Ibukiyama, Microstructure Tailoring for High Thermal Conductivity of β-Si3N4 Ceramics, Journal of the American Ceramic Society 86 (2003) 197-199. doi.org/10.1111/j.1151-2916.2003.tb03305.x
  62. K. Sillapasa, S. Danchaivijit, K. Sujirote, Effects of Silicon Powder Size on the Processing of Reaction-Bonded Silicon Nitride, J Met Mater Miner 15 (2005)
  63. R. Nikonam-Mofrad, M.D. Pugh, R.A.L. Drew, A comparative study on nitridation mechanism and microstructural development of porous reaction bonded silicon nitride in the presence of CaO, MgO and Al 2 O 3, Journal of Asian Ceramic Societies 8 (2020) 873-890. doi.org/10.1080/21870764.2020.1793471
  64. X. Zhu, Y. Sakka, Textured silicon nitride: processing and anisotropic properties, Science and Technology of Advanced Materials 9 (2008) 033001. doi.org/10.1088/1468-6996/9/3/033001
  65. N. Hirosaki, S. Ogata, C. Kocer, H. Kitagawa, Y. Nakamura, Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β − Si 3 N 4, Phys. Rev. B 65 (2002) 134110. doi.org/10.1103/PhysRevB.65.134110
  66. B. Li, L. Pottier, J.P. Roger, D. Fournier, K. Watari, K. Hirao, Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy, Journal of the European Ceramic Society 19 (1999) 1631-1639. doi.org/10.1016/S0955-2219(98)00258-1
  67. K. Hirao, K. Watari, M.E. Brito, M. Toriyama, S. Kanzaki, High Thermal Conductivity in Silicon Nitride with Anisotropie Microstructure, Journal of the American Ceramic Society 79 (1996) 2485-2488. doi.org/10.1111/j.1151-2916.1996.tb09002.x
  68. K. Hirao, T. Nagaoka, M.E. Brito, S. Kanzaki, Microstructure Control of Silicon Nitride by Seeding with Rodlike β‐Silicon Nitride Particles, Journal of the American Ceramic Society 77 (1994) 1857-1862. doi.org/10.1111/j.1151-2916.1994.tb07062.x
  69. K. Hirao, M. Ohashi, M.E. Brito, S. Kanzaki, Processing Strategy for Producing Highly Anisotropic Silicon Nitride, Journal of the American Ceramic Society 78 (1995) 1687-1690. doi.org/10.1111/j.1151-2916.1995.tb08871.x
  70. K. Watari, K. Hirao, M.E. Brito, M. Toriyama, S. Kanzaki, Hot Isostatic Pressing to Increase Thermal Conductivity of Si 3 N 4 Ceramics, J. Mater. Res. 14 (1999) 1538-1541. doi.org/10.1557/JMR.1999.0206
  71. Y. Akimune, F. Munakata, K. Matsuo, N. Hirosaki, Y. Okamoto, K. Misono, Raman Spectroscopic Analysis of Structural Defects in Hot Isostatically Pressed Silicon Nitride., Journal of the Ceramic Society of Japan 107 (1999) 339-342. doi.org/10.2109/jcersj.107.339
  72. Y. Sakka, T.S. Suzuki, Textured Development of Feeble Magnetic Ceramics by Colloidal Processing Under High Magnetic Field, J. Ceram. Soc. Japan 113 (2005) 26-36. doi.org/10.2109/jcersj.113.26
  73. Y. Sakka, T.S. Suzuki, T. Uchikoshi, Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering, Journal of the European Ceramic Society 28 (2008) 935-942. doi.org/10.1016/j.jeurceramsoc.2007.09.039
  74. X.W. Zhu, Y. Sakka, T.S. Suzuki, T. Uchikoshi, S. Kikkawa, The c-axis texturing of seeded Si3N4 with β-Si3N4 whiskers by slip casting in a rotating magnetic field, Acta Materialia 58 (2010) 146-161. doi.org/10.1016/j.actamat.2009.08.064
  75. C. Yang, J. Ding, J. Ma, B. Zhang, F. Ye, Y. Wu, Q. Liu, Microstructure tailoring of high thermal conductive silicon nitride through addition of nuclei with spark plasma sintering and post-sintering heat treatment, Journal of Alloys and Compounds 785 (2019) 89-95. doi.org/10.1016/j.jallcom.2018.12.204