THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Enclosed thermal management method for high-power photovoltaic inverters based on heat pipe heat sink

ABSTRACT
Photovoltaic (PV) inverter plays a crucial role in PV power generation. For high-power PV inverter, its heat loss accounts for about 2% of the total power. If the large amount of heat generated during the operation of the inverter is not dissipated in time, excessive temperature rise will reduce the safety of the devices. This paper proposes a closed PV inverter structure based on heat pipe and liquid cooling which overcomes the noise, dust and other problems caused by traditional air-cooling heat dissipation method and reduces cost of the volume occupied inside the body. Heat is dissipated through heat pipes, which are efficient heat transfer units. A simulation model of the actual cabinet was established using computational fluid dynamics (CFD), and the maximum junction temperature in the inverter was investigated under different coolant temperatures, flow rates, cooling liquid and heat loads. The results showed that the liquid cooling heat dissipation structure can effectively dissipate the heat inside the cabinet. The impact of two different types of heat sink used for power modules on temperature uniformity was studied. The results indicated that the 9-heat pipe type heat sink has better heat dissipation and uniform hot spots performance, the maximum heat source temperatures in the chip and capacitor were reduced by 9.91°C and 7.49°C respectively. Finally, the performance of the two types of radiators under different heat loads was studied.
KEYWORDS
PAPER SUBMITTED: 2024-05-12
PAPER REVISED: 2024-06-20
PAPER ACCEPTED: 2024-06-28
PUBLISHED ONLINE: 2024-08-18
DOI REFERENCE: https://doi.org/10.2298/TSCI240512182Z
REFERENCES
  1. Falck, J., Felgemacher, C., et al., Reliability of Power Electronic Systems: An Industry Perspective, IEEE Industrial Electronics Magazine., 12(2018), 2, pp. 24-35, DOI:10.1109/MIE.2018.2825481
  2. He Z, Yan Y., et al., Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review, Energy., 216(2021),119223, DOI:10.1016/j.energy.2020.119223
  3. Iwamuro, N., Laska, T., IGBT History, State-of-the-Art, and Future Prospects, IEEE Transactions on Electron Devices., 64(2017), 3, pp. 741-752, DOI:10.1109/TED.2017.2654599
  4. Andresen, M., Liserre, M., et al., Review of active thermal and lifetime control techniques for power electronic modules, Proceedings, 16th European Conference on Power Electronics and Applications., Lappeenranta, Finland, 2014, Vol.1, pp. 1-10
  5. Christen, D., Stojadinovic, M., et al., Energy Efficient Heat Sink Design: Natural Versus Forced Convection Cooling, IEEE Transactions on Power Electronics., 32(2017), 11, pp. 8693-8704. DOI:10.1109/TPEL.2016.2640454
  6. Rabkowski, J., Peftitsis, D., et al., Design Steps Toward a 40-kVA SiC JFET Inverter With Natural-Convection Cooling and an Efficiency Exceeding 99.5%, IEEE Transactions on Industry Applications., 49(2013), 4, pp. 1589-1598. DOI:10.1109/TIA.2013.2258132
  7. Bouknadel, A., Rah, I., et al., Comparative study of fin geometries for heat sinks in natural convection, Proceedings, 2014 International Renewable and Sustainable Energy Conference (IRSEC)., Ouarzazate, Morocco, 2014, Vol. 1, pp. 723-728
  8. Li, G., Zhang, J., et al., Thermal Analysis and Structural Optimization of Dual IGBT Module Heat Sink under Forced Air Cooling Condition, Proceedings, 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)., Chongqing, China, 2019, Vol. 1 ,pp. 1757-1762
  9. Bünnagel, C., Monir, S., et al., Forced air cooled heat sink with uniformly distributed temperature of power electronic modules, Applied Thermal Engineering., 199(2021), 117560, DOI:10.1016/j.applthermaleng.2021.117560
  10. Chu, W, X., Tsai, M, K., et al., CFD analysis and experimental verification on a new type of aircooled heat sink for reducing maximum junction temperature, Int. J. Heat Mass Transf., 148(2019), 119094, DOI:10.1016/j.ijheatmasstransfer.2019.119094
  11. Lin, X., Wu, H., et al., Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics, Entropy., 22(2020), 8, pp. 816-828, DOI:10.3390/e22080816
  12. Joshua, E., Luis, E., et al., Liquid-Cooled Heat Sink Design for a Multilevel Inverter Switch with Considerations for Heat Spreading and Manufacturability, Applied Thermal Engineering., 219(2023), 119588, DOI:10.1016/j.applthermaleng.2022.119588
  13. Kadir, G., Ozbek, K., et al., A novel cooler block design for photovoltaic thermal systems and performance evaluation using factorial design, Journal of Building Engineering., 48(2021), 103928, DOI:10.1016/j.jobe.2021.103928
  14. Wei, H., Zhang, J, F., et al., Performance analysis and structural optimization of a finned liquid-cooling radiator for chip heat dissipation, Applied Energy., 327(2022), 120048, DOI:10.1016/j.apenergy.2022.120048
  15. Xu, Y., Jie, B., et al., Heat Dissipation Simulation of Double-sided Liquid-cooled IGBT Module Package, Proceedings, 2019 20th International Conference on Electronic Packaging Technology(ICEPT)., Hong Kong, China, 2019, Vol. 1, pp. 1-4
  16. Tiwari, R., Kumar, D., et al., Enhancement of Heat Transfer in Liquid-Cooled Heat Sink Using Rotating Impeller, Lecture Notes in Mechanical Engineering., Beach Road, Singapore, 2022
  17. Wen, S., Chen, G., et al., Simulation Study on Nanofluid Heat Transfer in Immersion Liquid-Cooled Server, Applied Sciences., 13(2023), 13, 7575. DOI:10.3390/app13137575
  18. Xue, Z, G., Yan, Y, F., et al., Thermal-hydraulic performance analysis of a liquid-jet-cooled heat sink with a macroscopic porous flow diverter, Applied Thermal Engineering., 230(2023), 120654, DOI:10.1016/j.applthermaleng.2023.120654
  19. Marshall, G, J., Mahony, C, P., et al., Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview, Engineering., 5(2019), 5, pp. 954-969, DOI:10.1016/j.eng.2019.02.009
  20. Mochizuki, M., Latest development and application of heat pipes for electronics and automotive, Proceedings, IEEE CPMT Symposium Japan (ICSJ)., Kyoto, Japan, 2017, Vol. 1, pp. 87-90
  21. Laloya, E., Lucia, O., et al., Heat Management in Power Converters: From State of the Art to Future Ultrahigh Efficiency Systems, IEEE Transactions on Power Electronics., 31(2016), 11, pp. 7896-7907, DOI:10.1109/TPEL.2015.2513433
  22. Mizutani, T., Watanabe, N., et al., Experimental and analytical investigation of a 0.3-mm-thick loop heat pipe for 10 W-class heat dissipation, International Journal of Heat and Mass Transfer., 193(2022), 122950, DOI:10.1016/j.ijheatmasstransfer.2022.122950
  23. Xia, G., Zhuang, D., et al., Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink, International Journal of Refrigeration., 99(2019), Mar., pp. 69-79, DOI:10.1016/j.ijrefrig.2018.12.020
  24. Ren, R, Y., Zhao, Y, H., et al., Active air cooling thermal management system based on U-shaped micro heat pipe array for lithium-ion battery, Journal of Power Sources., 507(2021), 230314, DOI:10.1016/j.jpowsour.2021.230314
  25. Behi, H., Ghanbarpour, M., et al., Investigation of PCM-assisted heat pipe for electronic cooling, Applied Thermal Engineering., 127(2017), Dec., pp. 1132-1142, DOI:10.1016/j.applthermaleng.2017.08.109
  26. Han, C, L., He, L, D., et al., Study of heat dissipation characteristics of loop heat pipe with heat sink of composite material, Applied Thermal Engineering., 200(2021), 117572, DOI:10.1016/j.applthermaleng.2021.117572
  27. Zachariae, J., Matthias, T., et al., Silicon carbide based traction inverter cooling in electric vehicle using heat pipes, Thermal Science and Engineering Progress., 46(2023), 102155, DOI:10.1016/j.tsep.2023.102155
  28. Li, M ,S., Xu, S, M., et al., Experimental study on thermal and flow characteristics of metal foam heat pipe radiator. International Journal of Thermal Sciences., 159(2021), 106572, DOI: 10.1016/j.ijthermalsci.2020.106572
  29. Lu, J., Shen, L., et al., Investigation of a rectangular heat pipe radiator with parallel heat flow structure for cooling high-power IGBT modules, International Journal of Thermal Sciences., 135(2019), Jan., pp. 83-93, DOI:10.1016/j.ijthermalsci.2018.09.004
  30. Wang, H., Liserre, M., et al., Transitioning to Physics-of-Failure as a Reliability Driver in Power Electronics, IEEE Journal of Emerging and Selected Topics in Power Electronics., 2(2014), 1, pp. 97-114, DOI:10.1109/JESTPE.2013.2290282
  31. Lima, G, P, De., Prym, G, C, S., et al., Thermal Mathematical Modeling of Photovoltaic Inverters and Experimental Validation, Proceedings, 2021 Brazilian Power Electronics Conference (COBEP)., Joao Pessoa, Brazil, 2021, Vol. 1, pp. 1-7, DOI:10.1109/COBEP53665.2021.9684058
  32. Zhang, Z., Liu, Y, F., et al., Optimal Design of Multi-channel Water Cooled Radiator for Motor Controller of New Energy Vehicle, CES Transactions on Electrical Machines and Systems., 6(2022), 1, pp. 87-94, DOI:10.30941/CESTEMS.2022.00012
  33. Heris, S, Z., Esfahany, M, N., et al., Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow., 28(2007), 2, pp. 203-210, DOI:10.1016/j.ijheatfluidflow.2006.05.001
  34. Habibian, S, H., Abolmaali, A, M., et al., Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compact finned-tube heat exchangers for automobile radiator, Applied Thermal Engineering., 133(2018), March., pp. 248-260, DOI: 10.1016/j.applthermaleng.2018.01.032
  35. He, Z, Q., Yan, Y, F., et al., Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review, Energy., 216(2020), 119223, DOI:10.1016/j.energy.2020.119223
  36. He, J, K., Sangwongwanich, A., et al., Thermal Performance Evaluation of 1500-VDC Photovoltaic Inverters Under Constant Power Generation Operation, 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE)., Aswan, Egypt, 2019, Vol. 1 ,pp. 579-583, DOI: 10.1109/CPERE45374.2019.8980134