THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Numerical-experimental study of the boiling heat transfer coefficient in a thermosyphon

ABSTRACT
Thermosyphons are passive heat exchanger devices that use the latent heat of vaporization of a working fluid to intensify heat transfer. They consist of a metallic tube, passed through a vacuum process, and filled with a working fluid, and use the action of gravity to circulate the fluid internally. They are used to enhance heat transfer in many industrial areas, such as aerospace, electronics, and telecommunications, among others. In the literature, several studies are related to the subject under study, both experimental and numerical analyses. Still, there isn't validation of the results, especially when obtaining the boiling heat transfer coefficient. Thus, the main objective of the present work consists of determining an experimental test bench, from Dirichlet's Condition, varying an evaporator wall temperature (303.15, 313.15, and 323.15K) and water filling ratio (50 and 100% of the evaporator's volume) into stainless-steel thermosyphon, providing experimental data for validation of numerical simulations carried out using the Ansys® FluentTM software. The comparison between numerical and experimental results demonstrated good agreement validating the numerical methodology.
KEYWORDS
PAPER SUBMITTED: 2024-05-07
PAPER REVISED: 2024-06-24
PAPER ACCEPTED: 2024-06-26
PUBLISHED ONLINE: 2024-08-18
DOI REFERENCE: https://doi.org/10.2298/TSCI240507181B
REFERENCES
  1. Krambeck, L., Nishida, F. B., Aguiar, V. M., Santos, P. H. D., Antonini Alves, T., Thermal Performance Evaluation of Different Passive Devices for Electronic Cooling, Thermal Science, 23 (2019), 2B, pp. 1151-1160
  2. Jouhara, H., Reay, D. A., McGlen, R. J., Kew, P. A., McDonough, J., Heat pipes: Theory, design and applications, 7th ed. Butterworth-Heinemann, 2023
  3. Nishida, F. B., Krambeck, L., Santos, P. H. D., Antonini Alves, T., Experimental Investigation of Heat Pipe Thermal Performance with Microgrooves Fabricated by Wire Electrical Discharge Machining (Wire-EDM), Thermal Science, 24 (2020), 2A, pp. 701-711
  4. Santos, P. H. D., Vicente, K. A. T., Reis, L. S., Marquardt, L. S., Antonini Alves, T., Modeling and Experimental Tests of a Copper Thermosyphon, Acta Scientiarum. Technology (online), 39 (2017), 1, pp. 59-68
  5. Krambeck, L., Bartmeyer, G. A., Souza, D. O., Fusão, D., Santos, P. H. D., Antonini Alves, T., Experimental Thermal Performance of Different Capillary Structures for Heat Pipes, Energy Engineering (Print), 118 (2021), 1, pp. 1-14
  6. Santos, P. H. D., Antonini Alves, T., Oliveira Junior, A. A. M., Bazzo, E., Analysis of a Flat Capillary Evaporator with a Bi-Layered Porous Wick, Thermal Science, 24 (2020), 3B, pp. 1951-1962
  7. Jafari, D., Franco, A., Filippeschi, S., Di Marco, P., Two-Phase Closed Thermosyphons: A Review of Studies and Solar Applications, Renewable and Sustainable Energy Reviews, 53 (2016), pp. 575-593
  8. Machado, P. L. O., Pereira, T. S., Trindade, M. G., Biglia, F. M., Santos, P. H. D., Tadano, Y. S., Siqueira, H., Antonini Alves, T., Estimating Thermal Performance of Thermosyphons by Artificial Neural Networks, Alexandria Engineering Journal, 79 (2023), pp. 93-104
  9. Mantelli, M. B. H., Thermosyphons and heat pipes: Theory and applications, 1st ed. Springer Nature, 2021
  10. Fadhl, B., Wrobel, L. C., Jouhara, H., Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon, Applied Thermal Engineering, 60 (2013), pp. 122-131
  11. Jouhara, H., Fadhl, B., Wrobel, L. C., Three-Dimensional CFD Simulation of Geyser Boiling in a Two-Phase Closed Thermosyphon, International Journal of Hydrogen Energy, 41 (2016), pp. 16463-16476
  12. Faghri, A., Zhang, Y., Fundamentals of multiphase heat transfer and flow, 2nd ed. Springer Nature, 2020
  13. Bergman, T. L., Lavine, A. S., Fundamentals of heat and mass transfer, 8th ed. Wiley, 2018
  14. Souza, D. O., Machado, P. L. O., Chiarello, C., Santos, E. N., Silva, M. J., Santos, P. H. D., Antonini Alves, T., Experimental Study of Hydrodynamic Parameters Regarding on Geyser Boiling Phenomenon in Glass Thermosyphon using Wire-Mesh Sensor, Thermal Science, 26 (2022), 2B, pp. 1391-1404
  15. Krambeck, L., Bartmeyer, G. A., Souza, D. O., Fusão, D., Santos, P. H. D., Antonini Alves, T., Selecting Sintered Capillary Structure for Heat Pipes based on Experimental Thermal Performance, Acta Scientiarum. Technology, 44 (2022), e57099
  16. Santos, P. H. D., Krambeck, L., Santos, D. L. F., Antonini Alves, T., Analysis of a Stainless Steel Heat Pipe based on Operation Limits, International Review of Mechanical Engineering, 8 (2014), 3, pp. 599-608
  17. Shah, M. M., Two-phase heat transfer, 1st ed. Wiley, 2021