THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

A feasibility study on cooling asphalt pavements using heat pipe water cooling method

ABSTRACT
In hot weather, asphalt roads can suffer from plastic deformation due to high temperatures, causing ruts and reducing their lifespan. Heat pipes, efficient heat transfer devices, have the potential to cool asphalt roads. This study aims to assess their performance through a thermal resistance network model and numerical simulations. Results show that using heat pipes can reduce the average temperature of AC-16 C asphalt layers by 24.5°C and AC-25 C layers by 31°C. Closer spacing and lower cooling water temperature improve cooling. These findings are crucial for optimizing heat pipe cooling systems and improving asphalt road heat dissipation, benefiting road engineering.
KEYWORDS
PAPER SUBMITTED: 2024-03-08
PAPER REVISED: 2024-05-01
PAPER ACCEPTED: 2024-05-13
PUBLISHED ONLINE: 2024-07-13
DOI REFERENCE: https://doi.org/10.2298/TSCI240308150L
REFERENCES
  1. A. Ghasemirad, N. Bala, L. Hashemian, High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders, Molecules 25 (2020) 3326. doi.org/10.3390/molecules25153326
  2. V. Hojat Shamami, A.K. Khiavi, Effect of temperature on geosynthetic rutting performance in asphalt pavement, Petroleum Science and Technology 35 (2017) 1104-1109. doi.org/10.1080/10916466.2017.1305400
  3. A.M. Memon, M.H. Sutanto, M. Napiah, N.I.M. Yusoff, R.A. Memon, A.M. Al-Sabaeei, M. Ali, Physicochemical, rheological and morphological properties of bitumen incorporating petroleum sludge, Construction and Building Materials 297 (2021) 123738. doi.org/10.1016/j.conbuildmat.2021.123738
  4. Q. Zhang, S. Yang, G. Chen, Regional variations of climate change impacts on asphalt pavement rutting distress, Transportation Research Part D: Transport and Environment 126 (2024) 103968. doi.org/10.1016/j.trd.2023.103968
  5. Y. Qin, A review on the development of cool pavements to mitigate urban heat island effect, Renewable and Sustainable Energy Reviews 52 (2015) 445-459. doi.org/10.1016/j.rser.2015.07.177
  6. B. De Pascale, P. Tataranni, C. Lantieri, A. Bonoli, C. Sangiorgi, Innovative light-coloured porous asphalt for low-impact pavements: A laboratory investigation, Construction and Building Materials 368 (2023) 130482. doi.org/10.1016/j.conbuildmat.2023.130482
  7. I. Rocha Segundo, S. Landi, A. Margaritis, G. Pipintakos, E. Freitas, C. Vuye, J. Blom, T. Tytgat, S. Denys, J. Carneiro, Physicochemical and Rheological Properties of a Transparent Asphalt Binder Modified with Nano-TiO2, Nanomaterials 10 (2020) 2152. doi.org/10.3390/nano10112152
  8. L.A. Balan, B.R. Anupam, S. Sharma, Thermal and mechanical performance of cool concrete pavements containing waste glass, Construction and Building Materials 290 (2021) 123238. doi.org/10.1016/j.conbuildmat.2021.123238
  9. Q. Huang, Z. Qian, J. Hu, D. Zheng, Evaluation of Stone Mastic Asphalt Containing Ceramic Waste Aggregate for Cooling Asphalt Pavement, Materials 13 (2020) 2964. doi.org/10.3390/ma13132964
  10. D. Tavakoli, R. Sakenian Dehkordi, H. Divandari, J. De Brito, Properties of roller-compacted concrete pavement containing waste aggregates and nano SiO2, Construction and Building Materials 249 (2020) 118747. doi.org/10.1016/j.conbuildmat.2020.118747
  11. M. Hendel, M. Colombert, Y. Diab, L. Royon, Improving a pavement-watering method on the basis of pavement surface temperature measurements, Urban Climate 10 (2014) 189-200. doi.org/10.1016/j.uclim.2014.11.002
  12. J. Wang, Q. Meng, K. Tan, M. Santamouris, Evaporative cooling performance estimation of pervious pavement based on evaporation resistance, Building and Environment 217 (2022) 109083. doi.org/10.1016/j.buildenv.2022.109083
  13. H. Yang, K. Yang, Y. Miao, L. Wang, C. Ye, Comparison of Potential Contribution of Typical Pavement Materials to Heat Island Effect, Sustainability 12 (2020) 4752. doi.org/10.3390/su12114752
  14. L. Xu, J. Wang, F. Xiao, S. EI-Badawy, A. Awed, Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses, Applied Energy 281 (2021) 116077. doi.org/10.1016/j.apenergy.2020.116077
  15. W. Yao, C. Liu, X. Kong, Z. Zhang, Y. Wang, W. Gao, A systematic review of heat pipe applications in buildings, Journal of Building Engineering 76 (2023) 107287. doi.org/10.1016/j.jobe.2023.107287
  16. Z.A. Reheem, F.N. Al-Mousawi, N.S. Dhaidan, S.A. Kokz, Advances in heat pipe technologies for different thermal systems applications: a review, J Therm Anal Calorim 147 (2022) 13011-13026. doi.org/10.1007/s10973-022-11660-6
  17. Y. Tian, Z. Yang, Y. Liu, X. Cai, Y. Shen, Long-term thermal stability and settlement of heat pipe-protected highway embankment in warm permafrost regions, Engineering Geology 292 (2021) 106269. doi.org/10.1016/j.enggeo.2021.106269
  18. J.W. Daniels, E. Heymsfield, M. Kuss, Hydronic heated pavement system performance using a solar water heating system with heat pipe evacuated tube solar collectors, Solar Energy 179 (2019) 343-351. doi.org/10.1016/j.solener.2019.01.006
  19. T. Yi-Qiu, F. Yong-Kang, L. Yun-Liang, Z. Chi, Responses of snow-melting airfield rigid pavement under aircraft loads and temperature loads and their coupling effects, Transportation Geotechnics 14 (2018) 107-116. doi.org/10.1016/j.trgeo.2017.11.006
  20. D. Zhang, H. Tao, M. Wang, Z. Sun, C. Jiang, Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector, Applied Thermal Engineering 118 (2017) 113-126. doi.org/10.1016/j.applthermaleng.2017.02.089
  21. M.S. Söylemez, On the thermoeconomical optimization of heat pipe heat exchanger HPHE for waste heat recovery, Energy Conversion and Management 44 (2003) 2509-2517. doi.org/10.1016/S0196-8904(03)00007-4
  22. H. Jouhara, V. Anastasov, I. Khamis, Potential of heat pipe technology in nuclear seawater desalination, Desalination 249 (2009) 1055-1061. doi.org/10.1016/j.desal.2009.05.019
  23. Z.J. Zuo, A. Faghri, A network thermodynamic analysis of the heat pipe, International Journal of Heat and Mass Transfer 41 (1998) 1473-1484. doi.org/10.1016/S0017-9310(97)00220-2
  24. N. Zhang, G. Wu, B. Chen, C. Cao, Numerical Model for Calculating the Unstable State Temperature in Asphalt Pavement Structure, Coatings 9 (2019) 271. doi.org/10.3390/coatings9040271