THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Study on the performance of semiconductor thermoelectric generator system driven by salt gradient solar pond

ABSTRACT
The performance of a semiconductor thermoelectric generator system based on the Lower Convective Zone of a salt gradient solar pond and ambient has been studied numerically and experimentally. According to the numerically solar pond temperature development results, the temperature differential range of the thermoelectric generator system ranges from 14 to 36°C. The numerically results show that, with a load resistance of 2Ω for each thermoelectric generator unit, among the four days selected, the temperature difference power generation system had the highest output power and conversion efficiency of 4.66W and 2.95%, respectively, on October 1st. Based on the numerical results of the temperature developments salt gradient solar pond, thermoelectric power generation experimental setup which operates under adjustable hot and cold reservoirs has been constructed. The experimental device runs under the conditions that the cold side temperatures of thermoelectric generator are 10°C, 24°C, and 38°C, and the load resistance is 10Ω. The maximum current is 0.149 A, 0.159 A and 0.124 A, the maximum voltage is 1.49 V, 1.59 V and 1.24 V, respectively. The average deviations between the theoretical results and the experimental results of the current and voltage generated by the power generation system are 0.026 A, 0.023 A, 0.012 A and 0.26 V, 0.23 V, 0.12 V, respectively.
KEYWORDS
PAPER SUBMITTED: 2024-03-04
PAPER REVISED: 2024-04-07
PAPER ACCEPTED: 2024-05-04
PUBLISHED ONLINE: 2024-07-13
DOI REFERENCE: https://doi.org/10.2298/TSCI240304149M
REFERENCES
  1. SHAH N-U-H, ARSHAD A, KHOSA AZHAR A, et al. Thermal analysis of a mini solar pond of small surface area while extracting heat from lower convective layer
  2. SOGUKPINAR H, BOZKURT I, KARAKILCIK M. Performance comparison of aboveground and underground solar ponds
  3. EL-SEBAII A A, RAMADAN M R I, ABOUL-ENEIN S, et al. History of the solar ponds: A review study
  4. PRAJAPATI S, MEHTA N, YADAV S. An overview of factors affecting salt gradient solar ponds
  5. BOZKURT I. The investigation of using phase change material for solar pond insulation
  6. DING L C, AKBARZADEH A, SINGH B, et al. Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction
  7. ATALAY T, YAKUT Y, KöYSAL Y, et al. Experimental and Thermal Analysis of Solar Thermoelectric System Performance Incorporated with Solar Tracker
  8. DING L C, AKBARZADEH A, DATE A, et al. Passive small scale electric power generation using thermoelectric cells in solar pond
  9. GOSWAMI R, DAS R. Experimental analysis of a novel solar pond driven thermoelectric energy system
  10. YAKUT Y, ÖZBEKTAŞ S, KöYSAL Y, et al. Experımental investıgatıon and mathematıcal modelıng of a novel solar thermoelectrıc generator incorporated with thermal condensing system
  11. MANSOUR R B, NGUYEN C T, GALANIS N. Transient heat and mass transfer and long-term stability of a salt-gradient solar pond
  12. GIESTAS M, PINA H, JOYCE A. The influence of radiation absorption on solar pond stability
  13. WANG H, WU Q, MEI Y, et al. A study on exergetic performance of using porous media in the salt gradient solar pond
  14. H.F. Zhang, Solar Energy Thermal Application and Simulation, (Eds.: Y.C. Zhang), Xi'an Jiao Tong University Press Co., LTD., Xi'an,China, 2012
  15. WANG H, ZOU J, CORTINA J L, et al. Experimental and theoretical study on temperature distribution of adding coal cinder to bottom of salt gradient solar pond
  16. JAEFARZADEH M R. Thermal behavior of a small salinity-gradient solar pond with wall shading effect
  17. DING L C, AKBARZADEH A, DATE A. Performance and reliability of commercially available thermoelectric cells for power generation
  18. CHEN W-H, LIN Y-X, WANG X-D, et al. A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties
  19. LI K, GARRISON G, MOORE M, et a l. An expandable thermoelectric power generator and the experimental studies on power output
  20. TAN G, ZHAO L-D, KANATZIDIS M G. Rationally Designing High-Performance Bulk Thermoelectric Materials
  21. MA Z, WEI J, SONG P, et al. Review of experimental approaches for improving zT of thermoelectric materials
  22. CHEN Y, HOU X, MA C, et al. Review of Development Status of Bi2Te3-Based Semiconductor Thermoelectric Power Generation