ABSTRACT
The Tromber wall, of an area AT = 8.8 m ,built on the southern facade of a room, heats the accommodation during the transition months, complementary to electric power. The statistical processing of the experimental data led to a global quantitative image of the wall's behavior during the average day of the months March, April, September, and October 1999. The inner climate parameters are: tint = 21 °C, trad = 17.9 °C, troom= 19.5 °C, φ = (35 -70) %, E ∈ (80 - 120) lx. The thermal comfort factor is B = -0.325. These values insure a room's comfort close to the optimal one prescribed by the hygienists. The heliothermal conversion's efficiency is ηT = 10.4 %. The proportion of heat supplied by the wall in the entire energy required by the room is η(heat) = 45.8 %. The wall's specific cost is Pu = 24.9 Euro/m . The write-off period of the initial investment is n = 53 years. The development of passive solar architecture in the Euro-region Danube-Cris-Mures-Tisa which includes the town of Timisoara (45° N, 22° E), was proven feasible by the experiments from both the energy and the economical point of view.
KEYWORDS
PAPER SUBMITTED: 2003-02-05
PAPER REVISED: 2003-07-10
PAPER ACCEPTED: 2003-10-10
THERMAL SCIENCE YEAR
2003, VOLUME
7, ISSUE
Issue 2, PAGES [89 - 104]
- Athanasouli, G.; Massouporos, P. A model of the thermal restoration transient state of an opaque wall after the interruption of solar radiation, Solar Energy 66 (1), 21 - 31 (1999).
- Ercuta, A. A pn junction of electronic thermometer, Sem. Mate-Fiz., "Politehnica" Timisoara, 123 - 124 (1983).
- Fara, V.; Grigorescu, R.; Popovici, A. Technical and economical analysis of a solar energy installation (Analiza tehnico-economica a unei instalatii energetice solare), Ses. Coin. Fizica si Energetica, Pitesti (1978).
- Ilina, M.; Bandrabur, C.; Oancea, N. Unconventional energies used in construction installations (Energii neconventionale utilizate in instalatiile de constructii), Ed. Tehnica, Bucharest (1987).
- Lo, S., N., G.; Deal, C., R.; Norton, B. A school building reclad with thermosyphoning
- air panels, Solar Energy 52 (1), 49 - 58 (1994).
- Luminosu, I. Study on the energy contribution of a T-M wall to the heating of living spaces (Studiu asupra aportului energetic al peretelui T-M la climatizarea spatiilor de locuit), Simp. Inst. pt. Co. I, Timisoara, 154 - 159 (1992).
- Luminosu, I.; Mihalca, I.; Ercuta, A. Heating passive elements utilization for dwelling conditions, Sim. En. Solara, Timisoara, 50 - 53 (1989).
- Marcu, C.; Luminosu, I.; Borza, I. Experimental data regarding heating through passive methods in southwestern Romania (Date experimentale privind climatizarea prin metode pasive in sud-vestul Romaniei), Conf Ing. Sanitara, Chisinau, 193 - 201 (1997)
- Meroni, I.; Scamoni, F.; Vancini, C.; Munafo, F. Comparison study of two different testing methodologies used to characterize an opaque solar component, Solar Energy 52 (1), 39 - 48 (1994).
- Ohanession, P.; Charteres, W. Thermal simulation of a passive solar house using a Trombe Michel wall structure, Solar Energy 20 (3), (1978).
- De Sabata, C.; Luminosu, I. Upon possibilities of partial air-conditioning of dwellings in the temperature area using passive techniques, Simp. En. Solara, Timisoara, 25 - 28 (1989).
- De Sabata, C.; Mihalca, I.; Luminosu, I.; Ercuta, A.; Baea, R. Experimental study on Trombe wall efficiency concerning dwelling climatization, Sem. Mate-Fiz., Timisoara, 117-120 (1986).
- De Sabata, C.; Marcu, C.; Luminosu, I.; Damacus, Gh. Solaris 1 - auto-compensated differential bolometer (Solaris 1 - bolometru diferential autocompensat), Constructii, 9, 40-45 (1984).
- Savulescu, T., D. Ventilation and heating installations (In stalatii de incalzire si ventilare), Ed. Tehnica, Bucharest (1984).
- Twidell, J., W.; Johnstone, C.; Zuhdy, B.; Scott, A. Strathclyde university's passive solar, low - energy, residences with transparent insulation, Solar Energy 52 (1), 85 - 109 (1994).