International Scientific Journal

Thermal Science - Online First

online first only

Phase angle effect on heat transfer and indicated power of free piston Stirling engine

In this work, a transient CFD analysis is performed to analyze the effects posed by changing the phase angle between the displacer and power piston in a free piston Stirling engine. The numerical model that is used for analysis is axisymmetric which contains live engine spaces (expansion and compression space) and dead spaces (heater, regenerator, and cooler). The displacer and power piston movements are defined by a user defined function. The results showed that the compression ratio and pressure wave amplitude are strong function of phase angle and peaked at 120ᵒ phase angle. The optimum phase angle is also changing with operating frequency. The suitable phase angle at 80 Hz is the range of 60ᵒ-70ᵒ, but at a lower frequency around 50 Hz, its range is 80ᵒ-100ᵒ. The results also showed that the heat transfer rate at the heater and cooler channels are influenced by the change of phase angle. The heat exchange at the heater and cooler is peaked at 90° and 100° phase angle respectively. The flow losses from the heater, regenerator and cooler showed a rising trend with phase angle increase. The optimum phase angle was obtained by making a balance between phase angle effects and found the optimum range to be between 60°- 80° for peak power and efficiency.
PAPER REVISED: 2024-03-06
PAPER ACCEPTED: 2024-03-13
  1. A. Sharma, S. Kumar Shukla, and A. K. Rai, "FINITE TIME THERMODYNAMIC ANALYSIS AND OPTIMIZATION OF SOLAR-DISH STIRLING HEAT ENGINE WITH REGENERATIVE LOSSES,", vol. 15, no. 4, pp. 995-1009, 2011, doi: 10.2298/TSCI1104181015S
  2. A. Nattappan, S. P. Ganesan, V. Thiagarajan, and K. Ranganathan, "Design of Automation Control Thermal System Integrated with Parabolic Trough Collector Based Solar Plant," Thermal Science, vol. 26, no. 2, 2022, doi: 10.2298/TSCI201113218N
  3. C. Ulloa, J. L. Míguez, J. Porteiro, P. Eguía, and A. Cacabelos, "Development of a transient model of a stirling-based CHP system," Energies (Basel), vol. 6, no. 7, pp. 3115-3133, 2013, doi: 10.3390/en6073115
  4. I. Arashnia, G. Najafi, B. Ghobadian, T. Yusaf, R. Mamat, and M. Kettner, "Development of Micro-scale Biomass-fuelled CHP System Using Stirling Engine," in Energy Procedia, Elsevier Ltd, 2015, pp. 1108-1113. doi: 10.1016/j.egypro.2015.07.505
  5. I. W. Eames, K. Evans, and S. Pickering, "A comparative study of open and closed heat-engines for small-scale CHP applications," Energies (Basel), vol. 9, no. 3, Mar. 2016, doi: 10.3390/en9030130
  6. S. Fan, M. Li, S. Li, T. Zhou, Y. Hu, and S. Wu, "Thermodynamic analysis and optimization of a Stirling cycle for lunar surface nuclear power system," Appl Therm Eng, vol. 111, pp. 60-67, Jan. 2017, doi: 10.1016/J.APPLTHERMALENG.2016.08.053
  7. D. García, M. J. Suárez, E. Blanco, and J. I. Prieto, "Experimental correlations and CFD model of a non-tubular heater for a Stirling solar engine micro-cogeneration unit," Appl Therm Eng, 2019, doi: 10.1016/j.applthermaleng.2019.03.013
  8. Z. Song, J. Chen, and L. Yang, "Heat transfer enhancement in tubular heater of Stirling engine for waste heat recovery from flue gas using steel wool," Appl Therm Eng, vol. 87, pp. 499-504, Jun. 2015, doi: 10.1016/j.applthermaleng.2015.05.028
  9. M. Güven, H. Bedir, and G. Anlaş, "Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine," Energy Convers Manag, vol. 180, pp. 411-424, Jan. 2019, doi: 10.1016/j.enconman.2018.10.096
  10. U. Munir, A. Naeem Shah, S. A. Raza Gardezi, Z. Anwar, and M. S. Kamran, "Oscillatory heat transfer correlation for annular mini channel stirling heater," Case Studies in Thermal Engineering, vol. 21, no. May, p. 100664, 2020, doi: 10.1016/j.csite.2020.100664
  11. L. Rabhi, H. El Hassani, N. Boutammachte, and A. Khmou, "EXAMINATION OF STIRLING ENGINE PARAMETERS EFFECT ON ITS THERMAL EFFICIENCY USING PROSA SOFTWARE," Thermal Science, vol. 27, no. 6, 2023, doi: 10.2298/TSCI220617139R
  12. J. L. Salazar and W. L. Chen, "A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine," Energy Convers Manag, 2014, doi: 10.1016/j.enconman.2014.08.040
  13. W. L. Chen, K. L. Wong, and Y. F. Chang, "A numerical study on the effects of moving regenerator to the performance of a β-type Stirling engine," Int J Heat Mass Transf, vol. 83, pp. 499-508, 2015, doi: 10.1016/j.ijheatmasstransfer.2014.12.035
  14. W. L. Chen, Y. C. Yang, and J. L. Salazar, "A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine," Energy Convers Manag, 2015, doi: 10.1016/j.enconman.2015.10.007
  15. C. H. Cheng and Y. F. Chen, "Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine," Appl Therm Eng, 2017, doi: 10.1016/j.applthermaleng.2017.04.105
  16. G. Xiao et al., "Design optimization with computational fluid dynamic analysis of β-type Stirling engine," Appl Therm Eng, 2017, doi: 10.1016/j.applthermaleng.2016.10.063
  17. A. Abuelyamen, R. Ben-Mansour, H. Abualhamayel, and E. M. A. Mokheimer, "Parametric study on beta-type Stirling engine," Energy Convers Manag, 2017, doi: 10.1016/j.enconman.2017.04.098
  18. A. K. Almajri, S. Mahmoud, and R. Al-Dadah, "Modelling and parametric study of an efficient Alpha type Stirling engine performance based on 3D CFD analysis," Energy Convers Manag, 2017, doi: 10.1016/j.enconman.2017.04.073
  19. L. Kuban, J. Stempka, and A. Tyliszczak, "A 3D-CFD study of a γ-type Stirling engine," Energy, vol. 169, pp. 142-159, Feb. 2019, doi: 10.1016/J.ENERGY.2018.12.009
  20. B. C. Caetano, I. F. Lara, M. U. Borges, O. R. Sandoval, and R. M. Valle, "A novel methodology on beta-type Stirling engine simulation using CFD," Energy Convers Manag, vol. 184, pp. 510-520, Mar. 2019, doi: 10.1016/j.enconman.2019.01.075
  21. S. A. El-Ghafour, M. El-Ghandour, and N. N. Mikhael, "Three-dimensional computational fluid dynamics simulation of stirling engine," Energy Convers Manag, 2019, doi: 10.1016/j.enconman.2018.10.103
  22. S. Alfarawi, R. AL-Dadah, and S. Mahmoud, "Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation," Energy Convers Manag, 2016, doi: 10.1016/j.enconman.2016.07.016
  24. D. Manmohan, "Stirling Space Engine Program," Design, 1999
  25. E. J. Lewandowski and P. K. Johnson, "Stirling System Modeling for Space Nuclear Power Systems." 2008. Accessed: Jan. 17, 2019.