THERMAL SCIENCE
International Scientific Journal
CO-COMBUSTION: A SUMMARY OF TECHNOLOGY
ABSTRACT
Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel) of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.
PAPER SUBMITTED: 2006-06-16
PAPER REVISED: 2007-06-30
PAPER ACCEPTED: 2007-10-09
THERMAL SCIENCE YEAR
2007, VOLUME
11, ISSUE
Issue 4, PAGES [5 - 40]
- Järvinen, T., Alakangas, E., Co-Firing of Biomass-Evaluation of Fuel Procurement and Handling, in: Selected Existing Plants and Exchange of Information (COFIRING), Part 2, VTT-Energy Altener, January 2001
- Thorson, O., Modern Boiler Data for Co-Combustion (in Swedish with English summary), Värmeforsk 868, Project No. A4-217, 2004
- Hughes, E. E., Tillman, D. A., Biomass Cofiring: Status and Prospects 1996, Fuel Processing Technology, 54 (1998), 1-3, pp. 127-142
- Savolainen, K., Co-Firing of Biomass in Coal-Fired Utility Boilers, Applied Energy, 74 (2003), 3-4, pp. 369-38
- Mory, A., Tauschitz, J., Co-Combustion of Biomass in Coal-Fired Power Plants in Austria, VGB PowerTech, 79 (1999), 1, pp. 50-55
- ***, Tekes: http://www.tekes.fi/opet/pdf/kaipola.pdf (read August 2006)
- ***, Avedöre 2 Sets New Benchmarks for Efficiency, Flexibility and Environmental Impact, Modern Power Systems, 20 (2000), 1, pp. 25-36
- Raskin, N., Palonen, J., Nieminen, J., Power Boiler Fuel Augmentation with a Biomass Fired
- Anderl, H., Mory, A., Zotter, T., BioCoComb-Gasification of Biomass and Co-Combustion of Gas in a Pulverized Coal Boiler (in German), VGB-Kraftwerkstechnik, 80 (2000), 3, pp. 68-75
- Fernando, R., Experience of Indirect Cofiring of Biomass and Coal, IEA Clean Coal Centre, CCC 64, 2002
- Berge, N., Carlsson, M., Kallner, P., Strömberg, B., Reburning of a Pulverised Coal Flame with LVC Gas, in: Co-Gasification of Coal/Biomass and Coal/Waste Mixtures (APAS) (Ed. K. R. G. Hein), ISBN 3-928123-15-7, 1993, pp. 1992-1994
- Spliethoff, H., Hein, K. R. G., Effect of Co-Combustion of Biomass on Emissions in Pulverized Fuel Furnaces, Fuel Processing Technology, 54 (1998), 1-3, pp. 189-205
- Gustavsson, L., Leckner, B., Abatement of N2O Emissions from Circulating Fluidized Bed Combustion through Afterburning, I&EC Research, 34 (1995), 4, pp. 1419-1427
- Smoot, L. D., Hill, S. C., Xu, H., NOx Control through Reburning, Progress in Energy and Combustion Science, 24 (1998), 5, pp. 385-408
- Maly, P. M., Zamansky, V. M., Ho, L., Payne, R., Alternative Fuel Reburning, Fuel, 78 (1999), 3, pp, 327-334
- Harding, N. S., Adams, B. R., Biomass as a Reburning Fuel: A Specialized Cofiring Application, Biomass and Bioenergy, 19 (2000), 6, pp. 429-445
- Vilas, E., Skifter, U., Degn Jensen, A., López, C., Maier, J., Glarborg, P., Experimental and Modelling Study of Biomass Reburning, Energy and Fuels, 18 (2004), 5, pp. 1442-1450
- Fan, Z., Zhang, J., Sheng, C., Lin, X., Xu, Y., Experimental Study of NO Reduction through Reburning of Biogas, Energy and Fuels, 20 (2006), 2, pp. 579-582
- Skoglund, B., Six Years Experience with Sweden's Largest CFB Boiler, Proceedings (Ed. F. D. S. Preto), 14th International Conference on FBC, ASME, New York, USA, 1997, pp. 47-56
- Kokko, A., Nylund, M., Biomass and Coal Co-Combustion in Utility Scale - Operating Experience of Alholmens Kraft., Proceedings, 18th International Conference on FBC, ASME, New York, USA, ISBN: 0-7918-3755-6, Paper FBC2005-78035, 2005
- Jenkins, B. M., Baxter, L. L., Miles, Jr. T. R., Miles, T. R., Combustion Properties of Biomass, Fuel Processing Technology, 54 (1998), 1-3, pp. 17-46; http://www.ecn.nl/phyllis/; http://www.ieabcc.nl/database/biobank.html; http://www.vt.tuwien.ac.at/Biobib/biobib.html
- Bergman, P. C. A., Boersma, A. R., Zwart, R. W. R., Kiel, J. H. A., Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations, ECN Biomass, ECN-C-05-013, 2005
- Ãmand, L.-E., Personal communication, 2006
- Koppejan, J., Introduction and Overview of Technologies Applied Worldwide, 2nd World Biomass Conference, Workshop 4: Cofiring, Rome, 2004
- Wieck-Hansen, K., Overgaard, P., Hede Larsen, O., Cofiring Coal and Straw in a 150 MWe Power Boiler Experiences, Biomass and Bioenergy, 19 (2000), 6, pp. 395-409
- Wieck-Hansen, K., Sander, B., 10 Years Experience with Co-Firing Straw and Coal as Main Fuels Together with Different Types of Biomasses in a CFB Boiler in Grenå, Denmark, VGB PowerTech., 83 (2003), 10, pp. 64-67
- Gani, A., Morishita, K., Nishikawa, K., Naruse, I., Characteristics of Co-Combustion of Low-Rank Coal with Biomass, Energy and Fuels, 19 (2005), 4, pp. 1652-1659
- Ballester, J., Barroso, J., Cerecedo, L. M., Ichaso, R., Comparative Study of Semi-Industrial-Scale Flames of Pulverized Coals and Biomass, Combustion and Flame, 141 (2005), 3, pp. 204-215
- Skrifvars, B.-J., Backman, R., Hupa, M., Sfiris, G., Ãbyhammar, T., Lyngfelt, A., Ash Behaviour in a CFB Boiler during Combustion of Coal, Peat or Wood, Fuel, 77 (1998), 1-2, pp. 65-70
- Andersen, K. H., Frandsen, F. J., Hansen, P. F. B., Wieck-Hansen, K., Rasmussen, I., Overgaard, P., Dam-Johansen, K., Deposit Formation in a 150 MW Utility PF-Boiler during co-Combustion of Coal and Straw,Energy and Fuels, 14 (2000), 4, pp. 765-780
- Otsuka, N., Effects of Fuel Impurities on the Fireside Corrosion of Boiler Tubes in Advanced Power Generating Systems - A Thermodynamic Calculation of Deposit Chemistry, Corrosion Science, 44 (2002), 2, pp. 265-283
- Wei, X., Lopez, C., von Puttkamer, T., Schnell, U., Unterberger, S., Hein, K. R. G., Assessment of Chlorine-Alkali-Mineral Interactions during Co-Combustion of Coal and Straw, Energy and Fuels, 16 (2002), 5, pp. 1095-1108
- Yan, R., Gauthier, D., Flammant, G., Badie, J. M., Thermodynamic Study of the Behaviour of Minor Coal Elements and Their Affinities to Sulphur during Coal Combustion, Fuel, 78 (1999), 15, pp. 1817-1829
- Miettinen-Westberg, H., Byström, M., Leckner, B., Distribution of Potassium, Chlorine and Sulfur between Solid and Vapor Phases during Combustion of Wood Chips and Coal, Energy and Fuels, 17 (2003), 1, pp. 18-28
- Krause, H. H., High-Temperature Corrosion Problems in Waste Incineration Systems, J. Materials for Energy Systems, 7 (1986), 4, pp. 322-332
- Robinson, A. L., Junker, H., Baxter, L. L., Pilot Scale Investigation of the Influence of Coal-Biomass Cofiring on Ash Deposition Energy and Fuels, 16 (2002), 2, pp. 343-355
- Buck, P., Triebel, W., Operation Experiences with Co-Combustion of Municipal Sewage Sludge in the Coal-Fired Power Plant Heilbronn (in German), VGB Kraftwerkstechnik, 80 (2000), 12, pp. 82-87
- Luts, D., Devoldere, K., Laethem, B., Bartholomeeusen, W., Ockier, P., Co-Incineration of Dried Sewage Sludge in Coal-Fired Power Plants: A Case Study, Water Science and Technology, 42 (2000), 9, pp. 259-268
- Dayton, D. C., Belle-Oudry, D., Nordin, A., Effect of Coal Minerals on Chlorine and Alkali Metals Released during Biomass/Coal Cofiring, Energy and Fuels, 13 (1999), 6, pp. 1203-1211
- Aho, M., Silvennoinen, J., Preventing Chlorine Deposition on Heat Transfer Surfaces with Aluminium Silicon Rich Biomass Residue and Additive, Fuel, 83 (2005), 10, pp. 1299-1305
- Aho, M., Ferrer, E., Importance of Coal Ash Composition in Protecting the Boiler Against Chlorine Deposition During Combustion of Chlorine-Rich Biomass, Fuel, 84 (2005), 2-3, pp. 201-212
- Ãmand, L.-E., Leckner, B., Eskilsson, D., Tullin, C., Deposits on Heat Transfer Tubes during Co-Combustion of Biofuels and Sewage Sludge, Fuel, 85 (2006), 10-11, pp. 1313-1322
- Jiménez, S., Ballester, J., Effect of Co-Firing on the Properties of Submicron Aerosols from Biomass Combustion, Proc. of the Combustion Institute, 30 (2005), 2, pp. 2965-2972
- Seames, W. S., Fernandez, A., Wendt, J. O. L., A Study of Fine Particulate Emissions from Combustion of Treated Pulverized Municipal Sewage Sludge, Environmental Science and Technology, 36 (2002), 12, pp. 2772-2776
- Lundholm, K., Nordin, A., Öhman M., Boström D., Redused Bed Agglomeration by Co-Combustion Biomass with Peat Fuels in a Fluidized Bed, Energy and Fuels, 19 (2005), 6, pp. 2273-2278
- Griffin, R. D., A New Theory of Dioxin Formation in Municipal Solid Waste Combustion, Chemosphere, 15 (1986), 9-12, pp. 1987-1990
- Raghunathan, K., Gullett, B. K., Role of Sulfur in Reducing PCDD and PCDF Formation, Environ. Sci. Technol., 30 (1996), 6, pp. 1827-1834
- Gullett, B. K., Bruce, K. R., Beach, L. O., Effect of Sulfur-Dioxide on the Formation Mechanism of Polychlorinated Dibenzodioxin and Dibenzofuran in Municipal Waste Combustors, Environ. Science Technol., 26 (1992), 10, pp. 1938-1943
- Geiger, T., Hagenmaier, H., Hartmann, E., Römer, R., Seifert, H., Effect of Sulphur on the Formation of Dioxins and Furans in Sewage Sludge Incineration, VGB Kraftwerkstechnik,72 (1992), 2, pp. 153-158
- Xie, Y., Xie, W., Liu, K., Pan, W-P., Riley, J. T., The Effect of Sulfur Dioxide on the Formation of Molecular Chlorine during Co-Combustion of Fuels, Energy and Fuels, 14 (2000), 3, pp. 597-602
- Gullet, B., Raghunathan, K., Observations on the Effect of Process Parameters on Dioxin/Furan Yield in Municipal Waste and Coal Systems, Chemosphere, 34 (1997), 4-5, pp. 1027-1032
- Luthe, C., Strang, A., Uloth, V., Karidio, I., Prescot, B., Wearing, J., Sulphur Addition to Control Dioxins Formation in Salt-Laden Power Boilers, Pulp and Paper Canada, 99 (1998) 11, pp. 48-52
- Lindbauer, R., Wurst, F., Prey, T., Modification of Fuel as Head-End Technology to Reduce Dioxin in Thermal Treatment of Wastes (in German), in: Müllverbrennung und Umwelt 5 (Ed. K. J. Thomé-Kozmiensky), EF-Verlag für Energie und Umwelttechnik, Berlin, 1991, pp. 11-34
- Anthony, E. J., Jia, L., Granatstein, D. L., Dioxin and Furan Formation in FBC Boilers, Environ. Sci., Technol., 35 (2001), 14, pp. 3002-3007
- Pedersen, L. S., Morgan, D. J., van de Kamp, W. L., Christensen, J., Jespersen, P., Dam-Johansen, K., Effects on SOx and NOx Emissions by Co-Firing Straw and Pulverized Coal, Energy and Fuels, 11 (1997), 2, pp. 439-446
- Leckner, B., Karlsson, M., Gaseous Emissions from CFB Combustion of Wood, Biomass and Bioenergy, 4 (1993), 5, pp. 379-389
- Leckner, B., Ãmand, L.-E., Luecke, K., Werther, J., Gaseous Emissions from Co-Combustion of Sewage Sludge and Coal/Wood in Fluidized Bed, Fuel, 83 (2004), 4-5, pp. 477-486
- Tsai, M.-Y., Wu, K.-T., Huang, C.-C., Lee, H.-T., Co-Firing of Paper Sludge and Coal in an Industrial Circulating Fluidized Bed Boiler, Waste Management, 22 (2002), 4, pp. 439-442
- Desroches-Ducarne, E., Marty, E., Martin, G., Delfosse, L., Co-Combustion of Coal and Municipal Solid Waste in a Circulating Fluidized Bed, Fuel, 77 (1998), 12, pp. 1311-1315
- Hupa, M., Current Status and Challenges within Fluidized Bed Combustion, Swedish-Finnish Flame Days, International Flame Research Foundation, Boras, Sweden, ISBN 91-7178-185-4, 2005
- Leckner, B., Kilpinen, P., NO Emission from Co-Combustion of Coal and Wood - A Discussion on Modelling, Opening Lecture of the Joint Meeting of the Scandinavian-Nordic and Italian Sections of the Combustion Institute, Ischia, September 2003
- ***, Directive 2000/76/EC of the European Parliament and of the Council of December 4, 2000, on the Incineration of Waste, Official Journal L, 332/91 (2000)
- Ãmand, L.-E., Leckner, B., Lücke, K., Werther, J., Advanced Air Staging Techniques to Improve Fuel Flexibility, Reliability and Emissions in Fluidized Bed Co-Combustion, Värmeforsk Report 751, 2001
- Elled, A.-L., Ãmand, L.-E., Leckner, B., Andersson, B.-Ã., Influence of Phosphorus on Sulphur Capture during Co-Firing of Sewage Sludge with Wood or Bark in a Fluidised Bed, Fuel, 85 (2006), 12-13, pp. 1671-678
- Kling, Ã,. Myringer, Ã., Eskilsson, D., Aurell, J., Marklund, S., SCR at Co-Combustion of Biofuels and Waste Fuels (in Swedish with English summary), Värmeforsk Report 932 (F4-220), 2005
- ***, Vattenfall, Booklet: Recycled Waste Fuels (in Swedish), https://www.vattenfall.se/downloads/informationsmaterial/nox_eng.pdf (Accessed 2006)
- Sander, B., Full-Scale Investigation on Co-Firing of Straw, 2nd World Biomass Conference, Workshop 4: Cofiring, Rome, 2004
- Ãmand, L.-E., Leckner, B., Reduction of Emissions of Sulphur and Chlorine from Combustion of High Volatile Waste Fuels (Sludge) in Fluidised Bed, 3rd i-CIPEC, 2004, Proceedings, (Eds. K. Cen, J. Yang, Y. Chi), International Academic Publishers, Beijing, ISBN 7-5062-7034-X, 2004, pp. 476-481
- Kim, M.-R., Jang, J.-G., Yoa, S.-J., Kim, I.-K., Lee, J.-K., A Mechanism of CaO-SO2 Reaction during Fluidized Bed Sludge Incineration, Journal of Chemical Engineering of Japan, 38 (2005), 11, pp. 883-886
- Ninomiya, Y., Zhang, L., Sakano, T., Kanaoka, C., Masui, M., Transformation of Mineral and Emission of Particulate Matters during Co-Combustion of Coal with Sewage Sludge, Fuel, 83 (2004), 6, pp. 751-764
- Belén Folgueras, M., María Díaz, R., Xiberta, J., Sulphur Retention during Co-Combustion of Coal and Sewage Sludge, Fuel, 83 (2004), 10, pp. 1315-1322