THERMAL SCIENCE
International Scientific Journal
ADVANCED THERMODYNAMICS METRICS FOR SUSTAINABILITY ASSESSMENTS OF OPEN ENGINEERING SYSTEMS
ABSTRACT
This paper offers a verification of the following hypotheses. Advanced thermodynamics metrics based on entropy generation assessments indicate the level of sustainability of transient open systems, such as in manufacturing or process industries. The indicator of sustainability may be related to particular property uniformity during materials processing. In such a case the property uniformity would indicate systems’ distance from equilibrium i.e., from the sustainable energy utilization level. This idea is applied to a selected state-of-the-art manufacturing process. The system under consideration involves thermal processing of complex aluminum structures during controlled atmosphere brazing for a near-net-shape mass production of compact heat exchangers.
KEYWORDS
PAPER SUBMITTED: 2005-05-09
PAPER REVISED: 2006-01-12
PAPER ACCEPTED: 2006-02-13
THERMAL SCIENCE YEAR
2006, VOLUME
10, ISSUE
Issue 1, PAGES [125 - 140]
- Bošnjakovic, F., Technical Thermodynamics, Holt Reinhart and Winston, New York, USA, 1965 (6th German ed., Technische Thermodynamik, Steinkopf, Dresden, German DR, 1972) 138
- Keenan, J. H., Availability and Irreversibility in Thermodynamics, British J. of Applied Physics, 2 (1951), pp. 183-192
- Gaggioli, R. A., Principles for Thermodynamic Modeling and Analysis of Processes, Proceedings, ASME Advanced Energy Systems Division, AES - Vol. 36, ASME 1996, pp. 265-270
- Bejan, A., Advanced Engineering Thermo dynamics, John Willey and Sons, New York, USA, 1988
- Proceedings, Internation Symposioum on Efficiency, Costs, Optimization and Simulation of Energy Systems - ECOS 92 (Eds. A. Valero, G. Tsatsaronis), ASME, New York, USA, 1992
- Rant, Z., Exergy, a New Term for Technical Work Availability (in German), Forsch. Ing. Wes., 22 (1956), 1, pp. 36-37
- Kotas, T. J., The Exergy Method of Thermal Plant Analysis, Butterworths, London, 1985
- Bejan, A., Entropy Generation through Heat and Fluid Flow, John Willey and Sons, New York, USA, 1982
- Szargut, J., Morris, D. R., Steward, F. R., Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere Publishing Corporation, New York, USA, 1988
- Mihelcic, J. R., Crittenden, J. C., Small, M. J., Shonnard, D. R., Hokanson, D. R., Zhang, Q., Chen, H., Sorby, A., James, V. U., Suther land, J. W., Schnoor, J. L., Sustainability Science and Engineering: The Emergence of a New Metadiscipline, Environ. Sci. Technol., 37 (2003), pp. 5314-5324
- Anastas, P. T., Heine, L. G., William son, T. C., Green Engineering, ACS Symposium Series 766, American Chemical Society, Washington, DC, 2001
- Sankara, J., Sekulic, D. P., Irreversibility Approach for Sustainability Analysis of a Netshape Manufacturing System, IMECE2004-61592, 3, ASME, New York, USA, 2004
- Bakshi, B. R., A Thermodynamic Framework for Ecologically Conscious Process Systems Engineering, Computers and Chemical Engineering, 26 (2002), 2, pp. 269-282
- Gyftopoulos, E. P., Beretta, G. P., Thermodynamics: Foundations and Applications, Macmillan, New York, USA, 1991
- Grassmann, von P., On a General Definition of the Figure of Merit (in German), Chemie-Ingenieur-Technik, 22 (1950), 4, pp. 77-80; 174
- Moran, M. J., Availability Analysis: a Guide to Efficient Energy Use, Prentice Hall, Englewood Clifs, NJ, USA, 1982
- Kotas, T. J., Mayhew, Y. R., Raichura, R. C., Nomenclature for Exergy Analysis, Proceedings, Inst. Mech. Engrs., Vol. 209, 1995, pp. 275-280
- Mills, A., Heat and Mass Transfer, Irwin, Chicago, USA, 1995
- Sekulic, D. P., Salazar, A. J., Gao, F., Rosen, J. S., Hutchins, H. F., Local Transient Behavior of a Compact Heat Exchanger Core During Brazing. Equivalent Zonal (EZ) Approach, Int. J.of Heat Exchangers, 4 (2003), 1, pp. 91-108
- Shah, R. K., Sekulic, D. P., Fundamentals of Heat Exchanger Design, Wiley, Hoboken, NJ, 2003
- Sekulic, D. P., Gao, F., Zhao, H., Zellmer, B., Qian, Y. Y., Prediction of the Fillet Mass and Topology of Aluminum Brazed Joints, Welding Journal, 83 (2004), pp. 102s-110s
- Bejan, A., Tsatsaronis, G., Moran, M., Thermal Design & Optimization, John Willey and Sons, New York, USA, 1996
- Sekulic, D. P., Entropy-Based Metrics for Sustainability Assessments in Green Manufacturing, 2nd International Conference on Green and Sustainable Chemistry, and 9th Annual Green Chemistry and Engineering Conference, Washington, DC, 2005 http://oasys2.confex.com/asc/green05/techprogram/in dex.html.
- Degarmo, E. P., Black, J. T., Kosher, R. A., Materials and Processes in Manufacturing, John Willey and Sons, New York, USA, 2003
- Incropera, F. P., DeWitt, D. P., Fundamentals of Heat and Mass Transfer, John Willey and Sons, New York, USA, 2002