THERMAL SCIENCE

International Scientific Journal

STRUCTURAL AND MAGNETIC PROPERTIES OF NANOPARTICLE SEMICONDUCTORS LA1-XSRXMNO3

ABSTRACT
With a view to investigate the magneto-structural properties and influence of an­nealing on magnetoresistance of strontium-doped lanthanum manganite, samples of La1-xSrxMnO3 were prepared and their magneto-transport properties have been investigated in this article. Magnetoresistance is enhanced from 6% to about 94% at room temperature due to annealing. Resistivity and Seebeck coefficient were investi­gated over the temperature range 83 ≤ T ≤ 313 K. The quasi-static magnetization was investigated in the temperature range of 5-400 K under effect of a magnetic field of 100 Oe in both moods of field cooling presence besides the zero field cooling. The measurements of magnetization showed Curie transition from ferromagnetic be­havior to paramagnetic one. The Curie transition values increased with increasing the strontium content suggesting that the transfer integral between two Mn sites would be enhanced due to the substitution of smaller La ions (117.2 pm) by great­er Sr ions (132 pm). Various parameters were calculated from the application of variable range hopping and single polaron hopping models. Both models were utilized to investigate the effect of Sr on the conduction behavior. The behavior of thermopower with temperature was demonstrated on the basis scatterings of phonon-and magnon-.
KEYWORDS
PAPER SUBMITTED: 2024-08-24
PAPER REVISED: 2024-10-27
PAPER ACCEPTED: 2024-11-19
PUBLISHED ONLINE: 2025-02-22
DOI REFERENCE: https://doi.org/10.2298/TSCI2501383E
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2025, VOLUME 29, ISSUE Issue 1, PAGES [383 - 394]
REFERENCES
  1. Dorr, K., Ferromagnetic Manganites: Spin-Polarized Conduction vs. Competing Interactions, J. Phys. D, Appl. Phys., 39 (2006), 125
  2. Ahmed, A. M., et al., The Annealing Influence on the Electrical and Magnetic Behavior of Magnetoresistive/Insulator System, J. Low Temp. Phys., 42 (2016), 9, pp. 951-958
  3. Jenker, G. H., van Santen, J. H., Ferromagnetic Compounds of Manganese with Perovskite Structure, Physica, 16 (1950), 337
  4. Jenker, G. H., van Santen, J. H., Electrical Conductivity of Ferromagnetic Compounds of Manganese with Perovskite Structure, Physica, 16 (1950), 599
  5. Zener, C., Interaction between the d-Shells in the Transition Metals, II Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev., 82 (1951), 403
  6. Dinesh Varshney, D. N., Electrical Resistivity of the Hole Doped La0.8Sr0.2MnO3 Manganites: Role of Electron-Electron/Phonon-/Magnon-Interactions, Mate. Chem. Phys., 129 (2011), 3, pp. 896-904
  7. Ahmed, A. M., et al., Enhanced Electro-Magnetic Properties in La0.7Sr0.3MnO3/ZrO2 Composites, Indian J. Phys., 89 (2015), 6, pp. 561-570
  8. De Teresa, J. M. et al., Evidence for Magnetic Polarons in the Magnetoresistive Perovskites, Nature, 386 (1997), Mar., pp. 256-259
  9. Rao, C. N. R., Rachaudhuri, A. K., Colossal Magnetoresistance, Charge Ordering and Other Novel Properties of Manganites and Related Materials, 1 (1998), 13
  10. Mollah, S., et al., Adiabatic Small Polaron-Hopping Conduction in Ln0.85Ca0.15MnO3 (Ln=Nd, Pr and Sm) Perovskites, J. Phys. Chem. Solids, 69 (2008), 1023
  11. Iguchi, E., et al., Correlation between Hopping Conduction and Transferred Exchange Interaction in La2NiO4+δ below 300 K, Physica B, (1999), 3-4, pp. 270-332
  12. Tabuchi, A., et al., Dielectric Relaxation in LaSrCo1−xAlxO4 Ceramics, J. All. Compo., 1214 (2006), May, pp. 408-412
  13. Adam, A. M., et al., Effects of Transition Metal Element Doping on the Structural and Thermoelectric Properties of n-Type Bi2-xAgxSe3 Alloys, J. All. Compo., 851 (2021), 156887
  14. Ahmed, A. M., et al., Crystal Structure and Some Transport Properties of Na-Doped LaMnOy, J. Magm. Magn. Mater., 301 (2006), 452
  15. Mahesh, R., et al., Effect of Particle Size on the Giant Magnetoresistance of La0.7Ca0.3MnO3, Appl. Phys. Lett., 68 (1996), 2291
  16. Roy, S., et al., Interplay of Structure and Transport Properties of Sodium-Doped Lanthanum Manganite, J. Phys. Condens. Matter., 13 (2001), 9547
  17. Kouta, I., et al., Thermoelectric Properties of Polycrystalline La1−xSrxCoO3, Solid State Chem., 181 (2008), 11, pp. 3145-3150
  18. JDhahri, J., et al. The Effect of Deficit of Strontium on Structural, Magnetic and Electrical Properties of La0.8Sr0.2−x⋅xMnO3 Manganites, J. All. Compo., 394 (2005), 1-2, pp. 51-57
  19. Zemni, S., et al., The Effect of a Cation Radii on Structural, Magnetic and Electrical Properties of Doped Manganites La0.6−xPrxSr0.4MnO3, J. Solid State Chemistry, 177 (2004), 7, pp. 2387-2393
  20. Elsehly, E. M., et al., Annealing Effect on the Thermoelectric Properties of Multiwall Carbon Nanotubes, Physica E: Low-Dimensional Systems and Nanostructures, 146 (2023), 115566
  21. Dutta, A., Effect of Particle Size on the Magnetic and Transport Properties of La0.875Sr0.125MnO3, Phys. Rev. B, 68 (2003), 054432
  22. Furukawa, N., Transport Properties of the Kondo Lattice Model in the Limit S = ∞ and D = ∞, J. Phys. Soc. Jpn., 63 (1994), 3214
  23. Rao, C. N. R., Raychaudhur, A. K., Colossal Magneto- Resistance, Charge Order and Other Novel Properties of Manganites and Related Materials, World Scientific Publishing, Singapur, Singapur, 1998, p. 7
  24. Mannella, N., et al., Direct Observation of High-Temperature Polaronic Behavior in Colossal Magnetoresistive Manganites, Phys. Rev. Leters, 92 (2004), 16
  25. Sun, C. H., et al., The Transport Properties in Nd0.75Sr1.25CoO4 Film Evidence for Polaronic Transport, J. Phys. Chem. Solids, 70 (2009), pp. 286-290
  26. Austin, I. G., Mott, N. F., Polarons in crystalline and Non-Crystalline Materials, Adv. Phys., 18 (1969), 41
  27. Mollah, S., et al., Non-Adiabatic Small-Polaron Hopping Conduction in Pr0.65Ca0.35−xSrxMnO3 Perovskites above the Metal-Insulator Transition Temperature, J. Magm. Magn. Mater., 284 (2004), 1, pp. 383-394
  28. Soma, D., Dey, T. K., Thermoelectric Power of Potassium Doped Lanthanum Manganites at Low Temperatures, J. Magm. Magn. Mater., 311 (2007), 2, pp. 714-723
  29. Jaime, M., et al., High-Temperature Thermopower in La2/3Ca1/3MnO3 Films: Evidence for Polaronic Transport. Phys. Rev. B, 54 (1996), 11914
  30. Banerjee, P. S., Polaron Hopping Conduction and Thermoelectric Power in LaMnO3+δ, J. Appl. Phys., 89 (2001), 4955
  31. Viret, M., et al., Magnetic Localization in Mixed-Valence Manganites, Phys. Rev. B, 55 (1996), 8067
  32. Ravi, S., Kar, M., Study of Magneto-Resistivity in La1−xAgxMnO3, Compounds. Physica B, 348 (2004), 169
  33. Khan, W., et al., Small Polaron Hopping Conduction Mechanism in Fe Doped LaMnO3, J. Chem. Phys. 135 (2011), 054501
  34. Jung, W. H., Magnetic and Transport Properties of Ce2/3TiO2.981, J. Condens. Matter Phys., 17 (1998), 1317
  35. Banerjee, A., Nature of Small-Polaron Hopping Conduction and the effect of Cr Doping on the Transport Properties of Rare-Earth Manganite La0.5Pb0.5Mn1−xCrxO3, J. Chem. Phys., 115 (2001), 1550
  36. Ahmed, A. M., Influence of Heat Treatment on the Magnetic and Magnetocaloric Properties in Nd0.6Sr0.4MnO3 Compound, Solid State Sci., 57 (2016), July, pp. 1-8
  37. Abd El-Moez, A., Magnetoresistive and Magnetocaloric Response of Manganite/Insulator System, J. Alloys Compd., 657 (2016), Feb., pp. 495-505
  38. Venkataiah, G., Venugopal Reddy, P., Electrical Behavior of Sol-Gel Prepared Nd0.67Sr0.33MnO3 Manganite System, J. Magn. Magn. Mater., 285 (2005), 3, pp. 343-352
  39. Sagdeo, P. R., et al., The Contribution of Grain Boundary and Defects to the Resistivity in the Ferromagnetic State of Polycrystalline Manganites, J. Magn. Magn. Mater., 306 (2006), 1, pp. 60-68
  40. Y. Kalyana Lakshmi, P. Venugopal Reddy, Electrical Behavior of Some Silver-Doped Lanthanum-Based CMR Materials, J. Magn. Magn. Mater., 321 (2009), 9, pp. 1240-1245
  41. Adam, A. M., et al., Thermoelectric Power Properties of Ge doped PbTe Alloys, J. Alloys Compd., 872 (2021), 159630
  42. Nolas, G. S., et al., Thermoelectrics Basic Principles and New Materials Developments, Springer Series in Materials Science, Heidelberg, Germany, 2001, Vol. 45
  43. Jaime, M., et al., Magnetothermopower in La0.67Ca0.33MnO3 Thin Films, Appl. Phys. Lett., 68 (1996), 1576
  44. Mollah S., Non-Adiabatic Small-Polaron Hopping Conduction in Pr0.65Ca0.35-xSrxMnO3 Perovskites above the Metal-Insulator Transition Temperature, J. Magn. Magn. Mater., 284 (2004), 1, pp. 383-394
  45. Ravi, S., Kar, M., Study of Magneto-Resistivity in La1−xAgxMnO3 Compounds, Physica B, 348 (2004), 169
  46. Mandal, P., Emperature and Doping Dependence of the Thermopower in LaMnO3, Phys. Rev. B, 61 (2000), 14675
  47. Bhattacharya, S., et al., Effect of Li Doping on the Magnetotransport Properties, of La0.7Ca0.3−yLiyMnO3 System: Decrease of Metal-Insulator Transition Temperature, Appl. Phys. Lett., 82 (2003), 4103
  48. Kim, H. B., et al., Magnon-Drag Effect as the Dominant Contribution the Thermopower in Bi0.5−xLaxSr0.5MnO3 (0.1 ≤ x ≤ 0.4), J. Appl. Phys., 103 (2008), 3717

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence