THERMAL SCIENCE

International Scientific Journal

ENERGY COMPARISON OF SOLAR ABSORPTION COOLING WITH CLASSICAL COOLING SYSTEM

ABSTRACT
The paper examines the possibilities of applying solar cooling in Bosnia and Herzegovina, since the potential of solar energy is great. The goal is to reduce primary energy consumption, as well as to reduce emissions of harmful gases, primarily CO2. The feasibility of a single-stage H2O/LiBr absorption cooling device powered by heat from solar collectors for a building in Tuzla was investigated, as well as a comparison with the existing compression cooling device. A solar cooling system was selected for the calculated heat load values. A mathematical model for the absorption single-stage cooling cycle has been developed that includes mass and energy balance equations as well as heat exchange equations. The absorption system is designed for the maximum cooling load of the specified facility.
KEYWORDS
PAPER SUBMITTED: 2023-05-17
PAPER REVISED: 2024-01-30
PAPER ACCEPTED: 2024-05-27
PUBLISHED ONLINE: 2024-06-22
DOI REFERENCE: https://doi.org/10.2298/TSCI230517144R
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2024, VOLUME 28, ISSUE Issue 5, PAGES [4153 - 4166]
REFERENCES
  1. Balaras, C. A., et al., Solar Air Conditioning in Europe - an Overview, Renewable and Sustainable Energy Reviews, 11 (2007), 2, pp. 299-314
  2. Li, Z. F., Sumathy, K., Technology Development in the Solar Absorption Air-Conditioning Systems, Re-newable and Sustainable Energy Reviews, 4 (2000), 3, pp. 267-293
  3. Florides, G. A., Kalogirou S. A., Optimization and Cost Analysis of a Lithium Bromide Apsorption Solar Cooling System, Proceedings, Clima 2007, Helsinki, Finland, 2007
  4. Gomri, R., Solar Energy to Drive Apsorption Cooling Systems Suitable for Small Building Aplications, docplayer.net/190843465-Solar-energy-to-drive-absorption-cooling-systems-suitable-for-small-building-applications-rabah-gomri.html
  5. Zidianakis, G., et al., Simulation of Solar Apsorption Cooling System, Proceedings, 28th AIVC and 2nd Palenc Conference Building Low Energy Cooling and Ventilation Technologies in the 21st Century, Crete, Greece, 2007
  6. Pavković, B., et al., Simulation and Design of Solar Absorption Cooling System, www.iz-danja.smeits.rs/index.php/kghk/article/download/2852/2898
  7. Upman, K. K., et al., Financial Evaluation of Solar Powered Absorption Cooling System for Computer Laboratory, International Research Journal of Engineering and Technology, 4 (2017), 6, pp. 2781-2786
  8. Huang, L., Zheng, R., Energy and Economic Performance of Solar Cooling Systems in the Hot-Summer and Cold-Winter Zone, Ningbo University China, Ningbo, 2018
  9. Bolocan, S., et al., Development of a Small Capacity Solar Cooling Apsorption plant, Energy Procedia, Volume 74 (2015), Aug., pp. 624-632
  10. Martinović, T., Mitrović, M., Uticaj Solarnih Elektrana na Elektroenergetski Sistem B&H (in Bosnian), Elaborat, www.nosbih.ba/files/2014/12/20141219-lat-Uticaj-solarnih-elektrana-na-elektroener- getski-sistem-BiH.pdf [11]
  11. ***, Federalni Hidrometeorološki Savez BiH, www.fhmzbih.gov.ba/podaci/klima/2017.pdf
  12. Henning, H. M., et al., Solar unterstütze Klimatisierung, Wärme und Kälte - Energie aus Sonne und Erde, Jahrestagung des ForschungsVerbunds Sonnenenergie in Kooperation mit der Landesinitiative Zukun-ftsenergien NRW, Keln, 2005
  13. Rutz, D., et al., Small, Modular and Renewable District Heating & Cooling Grids for Communities in South-Eastern Europe, Proceedings, EUBCE 2016, Amsterdam, The Netherlands, 2016
  14. McLinden, M., Chapter 20, Thermophysical Properties of Refrigerants, ASHRAE Handbook--Fundamen-tals, 2005
  15. Ramić, L., Solarno Apsorpcijsko Hlađenje i Uporedba sa Klasičnim Sistemima Hlađenja (in Bosnian), Magistarski rad, Univerzitet u Tuzli, BiH, 2019
  16. ***, Solar Heat World Wide, Edition 2023, www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-20231.pdf
  17. ***, Installation instructions, www.yazakienergy.com/docs/WFC-S_Installation_Instruc-tions_2E1.pdf
  18. ***, Clint product guide, panasonics80.hu/clint/clint_product_guide.pdf
  19. ***, Hrastović Inženjering d.o.o., www.hrastovic-inzenjering.hr/toplinska-energija/sunano-hlaenje.html
  20. ***, European Commission, ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/pro-jects/documents/sahc_evaluation_of_components_for_solar_refrigeration.pdf
  21. ***, www.solcoproject.net/

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence