THERMAL SCIENCE
International Scientific Journal
ON ZERO-DIMENSIONAL OCEAN DYNAMICS
ABSTRACT
How to study the effect of the Sun or the Moon's gravity on ocean motion? Of course, Newton's gravity should be considered. However, Newton's law considers the Earth as a 0-D point, the ocean motion inside of a 0-D point of the Earth is negative 3-D, and Newton's law becomes invalid in a negative space. In order to solve the problem, we divide the Earth into two parts, one part is the studied ocean, the other is the left Earth without the ocean. A mechanics model can be then established for the 0-D ocean dynamics.
KEYWORDS
PAPER SUBMITTED: 2019-04-13
PAPER REVISED: 2019-11-01
PAPER ACCEPTED: 2019-11-01
PUBLISHED ONLINE: 2020-06-21
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 4, PAGES [2325 - 2329]
- Yuan, Y. L., et al., Establishment Of The Ocean Dynamic System With Four Sub-Systems And The Derivation Of Their Governing Equation Sets, J. Hydrodynam. B, 24 (2012), 2, pp. 153-168
- Sun, J. Q., et al., Levels And Distribution Of Dechlorane Plus And Related Compounds In Surficial Sed-iments Of The Qiantang River In Eastern China: The Results Of Urbanization And Tide, Sci. Tot. Envi-ron., 443 (2013), Jan., pp. 194-199
- El Naschie, M. S., On Certain 'Empty' Cantor Sets and Their Dimensions, Chaos, Solitons & Fractals, 4 (1994), 2, pp. 293-296
- El Naschie, M. S., A Review of E Infinity Theory and The Mass Spectrum of High Energy Particle Physics, Chaos, Solitons & Fractals, 19 (2004), 1, pp. 209-236
- El Naschie, M. S., On the Philosophy of Being and Nothingness in Fundamental Physics, Non-Linear Science Letters B, 1 (2011), 1, pp. 4-5
- He, J. H., An Elementary Introduction to Recently Developed Asymptotic Methods and Nanomechanics in Textile Engineering, Int. J. Nonl. Sci. Num. Sim., 22 (2008), 21, pp. 3487-3578
- He, J. H., Hilbert Cube Model For Fractal Spacetime, Chaos Solitons & Fractals, 42 (2009), 5, pp. 2754-2759
- He, J. H., A Note on Elementary Cobordism and Negative Space, Int. J. Nonl. Sci. Num. Sim., 11 (2010), 12, pp. 1093-1101
- Ain, Q. T., He, J. H., On Two-Scale Dimension and Its Applications, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- He, J. H., Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Sci-ence, 23 (2019), 4, pp. 2131-2133
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Results Phys., 10 (2018), Sept., pp. 272-276
- Wang, Y., Fractal Derivative Model for Tsunami Travelling, Fractals, 27 (2019), 2, 1950017
- He, J. H., A New Fractal Derivation, Thermal Science, 15 (2011), Suppl. 1, pp. S145-S147
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Results in Physic, 10 (2018), Sept., pp. 272-276
- He, J. H., A Simple Approach to One-Dimensional Convection-Diffusion Equation and Its Fractional Modification for E Reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemis-try, 854 (2019), Dec., ID 113565
- He, J. H., Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves, J. Appl. Comput. Mech., 6 (2020), 4, pp. 735-740
- Wang, Y., et al., A Fractional Whitham-Broer-Kaup Equation and Its Possible Application to Tsunami Prevention, Thermal Science, 21 (2017), 4, pp. 1847-1855
- Wang, Y., et al. A Variational Formulation for Anisotropic Wave Traveling in a Porous Medium, Frac-tals, 27 (2019), June, 1950047
- Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 27 (2019), 8, ID 1950134
- He, J. H., A Modified Li-He's Variational Principle for Plasma, International Journal of Numerical Methods for Heat and Fluid Flow, On-line first, doi.org/10.1108/HFF-06-2019-0523, 2019
- He, J. H., Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, International Journal of Numerical Methods for Heat and Fluid Flow, On-line first, doi.org/10.1108/HFF-07-2019-0577, 2019
- He, J. H., Sun, C., A Variational Principle for a Thin Film Equation, Journal of Mathematical Chemis-try, 57 (2019), 9, pp. 2075-2081
- He, J. H., Variational Principles For Some Non-Linear Partial Differential Equations With Variable Co-efficients, Chaos Solitons & Fractals, 19 (2004), 4, pp. 847-851
- He, J. H., Some Asymptotic Methods for Strongly Non-Linear Equations, Int. J. Mod. Phys. B, 20 (2006), 10, pp. 1141-1199
- He, J. H., Ji, F. Y., Taylor Series Solution for Lane-Emden Equation, Journal of Mathematical Chemis-try, 57 (2019), 8, pp. 1932-1934
- Ren, Z. F., Wu, J. B. He's Frequency-Amplitude Formulation for Non-Linear Oscillator with Damping, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1045-1049
- Ren, Z. F., Hu, G. F., He's Frequency-Amplitude Formulation with Average Residuals for Non-Linear Oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1050-1059
- Ren, Z. F., Hu, G. F. Discussion on the Accuracies of He's Frequency-Amplitude Formulation and Its Modification with Average Residuals, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1713-1715
- Wang, Q. L., et al., A Short Remark on Ren-Hu's Modification of He's Frequency-Amplitude Formula-tion and the Temperature Oscillation in a Polar Bear Hair, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1374-1377
- Hu, G. F., Deng, S. X., Ren's Frequency-Amplitude Formulation for Non-Linear Oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1681-1686
- Tao, Z. L., et al. Approximate Frequency-Amplitude Relationship for a Singular Oscillator, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1036-1040
- He, C. H., et al., A Complement to Period/Frequency Estimation of a Non-Linear Oscillator, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 992-995
- Tao, Z. L., et al., Frequency and Solution of an Oscillator with a Damping, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1699-1702
- Wang, Y., An, J. Y., Amplitude-Frequency Relationship to a Fractional Duffing Oscillator Arising in Microphysics and Tsunami Motion, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1008-1012
- He, J. H., The Simpler, the Better: Analytical Methods for Non-Linear Oscillators and Fractional Oscil-lators, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1252-1260
- He, J. H., The Simplest Approach to Non-Linear Oscillators, Results in Physics, 15 (2019), 102546
- Ren, Z. F., et al., He's Multiple Scales Method for Non-Linear Vibrations, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1708-1712
- Yu, D. N., et al., Homotopy Perturbation Method with an Auxiliary Parameter for Non-Linear Oscilla-tors, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1540-1554