THERMAL SCIENCE
International Scientific Journal
EFFECT OF IGNITION ENERGY ON COAL DUST EXPLOSION
ABSTRACT
Coal dust explosion is of great importance for both theoretical analysis and practical applications. However, there is not a complete theory to reveal its mechanism. Here we show that the ignition energy plays an important role. An experiment is designed using different volatile coal dusts under different ignition energies, and the results are extremely helpful for avoiding coal dust explosion and can be also used for verification of a new theory.
KEYWORDS
PAPER SUBMITTED: 2019-04-24
PAPER REVISED: 2019-10-25
PAPER ACCEPTED: 2019-10-28
PUBLISHED ONLINE: 2020-06-21
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 4, PAGES [2621 - 2628]
- Eckhoff, R. K., Dust explosion research, State-of-the-art and outstanding problems, Journal of Hazardous Materials, 13 (1993), 3, pp. 103-117
- Klemens, R., et al., Suppression of Dust Explosions by Means of Different Explosive Charges, Journal of Loss Prevention in the Process Industries, 13 (2000), 3, pp. 265-275
- Abbasi, T., Abbasi, S., Dust explosions-Cases, Causes, Consequences, and Control, Journal of Hazardous Materials, 140 (2007), 1, pp. 7-44
- Amyotte, P. R., Some Myths and Realities about Dust Explosion, Process Safety and Environmental Protection, 92 (2014), 4, pp. 292-299
- Cashdollar, K. L., Overview of Dust Explosibility Characteristics, Journal of Loss Prevention in the Process Industries, 13 (2000), 3, pp. 183-199
- Gao, W., et al., Effect of Ignition on the Explosion Behavior of 1-Octadecanol/Air Mixtures, Powder Technology, 241 (2013), 1, pp. 105-114
- Mittal, M., Limiting Oxygen Concentration for Coal Dusts for Explosion Hazard Analysis and Safety, Journal of Loss Prevention in the Process Industries, 26 (2013), 6, pp. 1106-1112
- Pilao, R., et al., Overall Characterization of Cork Dust Explosion, Journal of Hazardous Materials, 133 (2006), 1, pp. 183-195
- Zhen, G. P., Leuckel, W., Effects of Ignitors and Turbulence on Dust Explosions, Journal of Loss Prevention in the Process Industries, 10 (1997), 5, pp. 317-324
- Zhang, S. Y., Xie, A. G., Two Dimensional Numerical Simulations of Thermal Processes in a Coke Oven Chamber , Energy for Metallurgical Industry, 32 (2013), 1, pp. 20-25
- Song, N., et al., The Heat Capacity Test and Analysis of Loose Coal in Low Temperature, Energy Technology and Management, 27 (2011), 2, pp. 94-96
- Chen, W. M., Calorific Value and Calculation Formula of Coal, China Coal Industry Publishing Home, (in Chinese), Beijing, China, 1993
- Kuai, N. S., et al., Experiment-Based Investigations of Magnesium Dust Explosion Characteristics, Journal of Loss Prevention in the Process Industries, 24 (2011), 4, pp. 302-313
- Hu, S., et al., Surface Characteristic of Coal Particles During Combustion Processes, Development of Natural Science, 12 (2002), 2, pp. 187-191
- Dahoe, A. E., et al., Dust Explosions in Spherical Vessels: The Role of Flame Thickness in the Validity of the ‘Cube-Root Law', Journal of Loss Prevention in the Process Industries, 9 (1996), 1, pp. 33-44
- Chawla, N., et al., A Comparison of Experimental Methods to Determine the Minimum Explosible Concentration of Dusts, Fuel, 75 (1996), 6, pp. 654-658
- Goroshin, S., et al., Burning Velocities in Fuel-Rich Aluminum Dust Clouds, Symposium (International) on Combustion, 26 (1996), 2, pp. 1961-1967
- Cashdollar, K. L., Chatrathi, K., Minimum Explosible Dust Concentrations Measured in 20L and 1 m3 chambers, Combustion Science and Technology, 87 (1993), 1, pp. 157-171
- Myers, T. J., Reducing Aluminum Dust Explosion Hazards: Case Study of Dust Inerting in an Aluminum Buffing Operation, Journal of Hazardous Materials, 159 (2008), 1, pp. 72-80
- He, J. H., Ji, F. Y. Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
- Ain, Q. T., He, J. H., On Two-Scale Dimension and its Applications, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Result in physics, 10 (2018), Sept., pp. 272-276
- Wang, Q. L., et al., Fractal Calculus and its Application to Explanation of Biomechanism of Polar Bear Hairs, Fractals, 26 (2018), ID 1850086
- Wang Y., Deng, Q. G., Fractal Derivative Model for Tsunami Travelling, Fractals, 27 (2019), 1, ID 1950017
- He, J. H., A Simple Approach to One-Dimensional Convection-Diffusion Equation and Its Fractional Modification for E Reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemistry, 854 (2019), 113565
- Liu, H. Y., et al., A Fractional Nonlinear System for Release Oscillation of Silver Ions from Hollow Fibers, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2018), 1, pp. 88-92
- Lin, L., Yao, S. W., Release Oscillation In A Hollow Fiber - Part 1: Mathematical Model And Fast Estimation Of Its Frequency, Journal of Low Frequency Noise, Vibration and Active Control, 38 (2019), 3-4, pp. 1703-1707
- Ban, T., Cui, R. Q., He's Homotopy Perturbation Method for Solving Time Fractional Swift-Hohenberg Equations, Thermal science, 22 (2018), 4, pp. 1601-1605
- Wang, K. L., et al., A Fractal Variational Principle for the Telegraph Equation with Fractal Derivatives, Fractals, On-line first, doi.org/10.1142/S0218348X20500589, 2020
- Wang, K. L., et al., Physical Insight of Local Fractional Calculus and its Application to Fractional Kdv-Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, ID 1950122
- Wang, K. L., Wang. K. J., A Modification of the Reduced Differential Transform Method for Fractional Calculus, Thermal Science, 22 (2018), 4, pp. 1871-1875
- Wang, K. L., Yao, S. W., Numerical Method for Fractional Zakharov-Kuznetsov Equation with He's Fractional Derivative, Thermal Science, 23 (2019), 4, pp. 2163-2170