THERMAL SCIENCE
International Scientific Journal
NANOFIBERS MEMBRANE FOR DETECTING HEAVY METAL IONS
ABSTRACT
Carbon materials are promising candidates for sensors to detect heavy metal ions. This paper reported an effective method of fabricating nanofiber membrane sensor for detection of heavy metal ions by electrospinning with the carbon nanoparticles and PANi (polyaniline) as additives. The results revealed that the PANi/C/PAN nanofiber membrane was the most economical approach to adsorbing and detecting metal ions with highly sensitive property. This paper sheds a light on an economic fabrication of nanofiber membrane sensor with well-defined characteristics in electrical sensors and adsorption applications.
KEYWORDS
PAPER SUBMITTED: 2019-04-30
PAPER REVISED: 2019-09-21
PAPER ACCEPTED: 2019-09-22
PUBLISHED ONLINE: 2020-06-21
THERMAL SCIENCE YEAR
2020, VOLUME
24, ISSUE
Issue 4, PAGES [2463 - 2468]
- Thiruppathi, A. R., et al., Facile One-Pot Synthesis of Fluorinated Graphene Oxide for Electrochemical Sensing Of Heavy Metal Ions, Electrochem Commun, 76 (2017), Mar., pp. 42-46
- Guo, Z., et al., Simultaneous Determination of Trace Cd(II), Pb(II) and Cu(II) by Differential Pulse Anodic Stripping Voltammetry Using a Reduced Graphene Oxide-Chitosan-Poly-L-Lysine Nanocomposite Modified Glassy Carbon Electrode, J. Colloid Interface Sci, 490 (2017), Mar., pp. 11-22
- El-Shishtawy, R. M., et al., Development of Cd2+ Sensor Based on BZNA/Nafion/Glassy Carbon Electrode by Electrochemical Approach, Chem. Eng. J., 352 (2018), Nov., pp. 225-231
- Wu, W., et al., Sensing Nitrite with a Glassy Carbon Electrode Modified with a Three-Dimensional Network Consisting of Ni7S6 and Multi-Walled Carbon Nanotubes, Microchim Acta, 183 (2016), 12, pp. 3159-3166
- Wu, W.Q., et al., Sensitive, Selective and Simultaneous Electrochemical Detection of Multiple Heavy Metals in Environment and Food Using a Low Cost Fe3O4 Nanoparticles/Fluorinated Multi-Walled Car-bon Nanotubes Sensor, Ecotoxicology and Environmental Safety, 175 (2019), July, pp. 243-250
- Zhou, C. J., et al., Silkworm-Based Silk Fibers by Electrospinning, Results in Physics, 15 (2019), Dec., ID 102646
- Li, X. X., He, J. H., Nanoscale Adhesion and Attachment Oscillation under the Geometric Potential. Part 1: The Formation Mechanism of Nanofiber Membrane in the Electrospinning, Results in Physics, 12 (2019), Mar., pp. 1405-1410
- Liu, Y. Q., et al., Nanoscale Multi-Phase Flow and its Application to Control Nanofiber Diameter, Thermal Science, 22 (2018), 1, pp. 43-46
- He, J. H., et al., Review on Fiber Morphology Obtained by the Bubble Electrospinning and Blown Bub-ble Spinning, Thermal Science, 16 (2012), 5, pp. 1263-1279
- Zhao L., et al., Sudden Solvent Evaporation in Bubble Electrospinning for Fabrication of Unsmooth Nanofibers, Thermal Science, 21 (2017), 4, pp. 1827-1832
- Liu, L. G., et al., Solvent Evaporation in a Binary Solvent System for Controllable Fabrication of Porous Fibers by Electrospinning, Thermal Science, 21 (2017), 4, pp. 1821-1825
- Tian, D., et al., Self-Assembly of Macromolecules in a Long and Narrow Tube, Thermal Science, 22 (2018), 4, pp. 1659-1664
- Peng, N. B., et al., A Rachford-Rice Like Equation for Solvent Evaporation in the Bubble Electrospinning, Thermal Science, 22 (2018), 4, pp. 1679-1683
- Liu, Z., et al., A Mathematical Model for the Formation of Beaded Fibers in Electrospinning, Thermal Science, 19 (2015), 4, pp. 1151-1154
- Tian, D., et al., Macromolecular Electrospinning: Basic Concept & Preliminary Experiment, Results in Physics, 11 (2018), Dec., pp. 740-742
- Li, X. X., et al., The Effect of Sonic Vibration on Electrospun Fiber Mats, Journal of Low Frequency Noise, Vibration and Active Control, 16 (2019), 3-4, pp. 1246-1251
- Tian, D., et al., Geometrical Potential and Nanofiber Membrane's Highly Selective Adsorption Property, Adsorption Science & Technology, 37 (2019), 5-6, pp. 367-388
- Liu, L. G., et al., Electrospun Polysulfone/Poly (Lactic Acid) Nanoporous Fibrous Mats for Oil Removal from Water, Adsorption Science & Technology, 37 (2019), 5-6, pp. 438-450
- Li, Y., et al., Fabrication and Characterization of ZrO2 Nanofibers by Critical Bubble Electrospinning for High-Temperature-Resistant Adsorption and Separation, Adsorption Science & Technology, 37 (2019), 5-6, pp. 425-437
- He, J. H., From Micro to Nano and from Science to Technology: Nano Age Makes the Impossible Possible, Micro and Nanosystems, 12 (2020), 1, pp. 1-2