International Scientific Journal


Different mathematical models can describe coal devolatilization as the part of combustion process. Some models are simple, while others are more complex and take into account coal’s complexity and heterogeneity of structure. A chemical percolation devolatilization (CPD) model for describing the devolatilization process of two Serbian lignites from Kostolac and Kolubara open coal mines was studied. Results of the model were compared to devolatilization measurements obtained from two experimental methods - a wire mesh reactor (WMR) and thermogravimetric analysis (TGA). Two coal samples with four different granulations were investigated for each lignite under different experimental conditions (different maximum temperatures and heating rates). Total volatile yields obtained from the WMR and TGA together with results predicted by the CPD model are presented and compared with literature data. For TGA simulation, the CPD model yielded better results in cases where the kinetic parameters obtained under experimental conditions were used rather than kinetic parameters derived from predefined values in the model itself. For WMR, the CPD model predictions of devolatilization were mixed and were dependent on temperature.
PAPER REVISED: 2018-06-28
PAPER ACCEPTED: 2018-06-30
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Supplement 5, PAGES [S1543 - S1557]
  1. Council, W.E., World Energy Scenario 2016, 2016.
  2. Sl.Glasnik RS, br. 110/2016, Energetski bilans Republike Srbije za 2017. godinu
  3. ***, Fundamentals of Coal Conversion, Chapter 12: Fundamentals of coal conversion and relation to coal properties, Energy, 12 (1987). doi:10.1016/S0360-5442(87)80014-2.
  4. Solomon, P.R., M.A. Serio, E.M. Suuberg, Coal pyrolysis: Experiments, kinetic rates and mechanisms, Progress in Energy and Combustion Science, 18 (1992) pp. 133-220. doi:10.1016/0360-1285(92)90021-R.
  5. Solomon, P.R., D.G. Hamblen, M.A. Serio, Z.Z. Yu, S. Charpenay, A characterization method and model for predicting coal conversion behaviour, Fuel, 72 (1993) pp. 469-488. doi:10.1016/0016-2361(93)90106-C.
  6. Grant, D.M., R.J. Pugmire, T.H. Fletcher, A.R. Kerstein, Chemical model of coal devolatilization using percolation lattice statistics, Energy & Fuels, 3 (1989) pp. 175-186. doi:10.1021/ef00014a011.
  7. Niksa, S., A.R. Kerstein, Flashchain Theory for Rapid Coal Devolatilization Kinetics .1. Formulation, Energy & Fuels, 5 (1991) pp. 647-665. doi:10.1021/ef00029a006.
  8. Smith, K.L., L.D. Smoot, T.H. Fletcher, R.J. Pugmire, The Structure and Reaction Processes of Coal, Springer Science, 1994. doi:10.1007/978-1-4899-1322-7.
  9. Jovanovic, R., A. Milewska, B. Swiatkowski, A. Goanta, H. Spliethoff, Sensitivity analysis of different devolatilisation models on predicting ignition point position during pulverized coal combustion in O 2/N 2 and O 2/CO 2 atmospheres, Fuel, 101 (2012) pp. 23-37. doi:10.1016/j.fuel.2011.02.024.
  10. Richards, A.P., T.H. Fletcher, A comparison of simple global kinetic models for coal devolatilization with the CPD model, Fuel, 185 (2016) pp. 171-180. doi:10.1016/j.fuel.2016.07.095.
  11. Arenillas, A., F. Rubiera, C. Pevida, J.J. Pis, A comparison of different methods for predicting coal devolatilisation kinetics, Journal of Analytical and Applied Pyrolysis, 58-59 (2001) pp. 685-701. doi:10.1016/S0165-2370(00)00183-2.
  12. Fletcher, T.H., D. Barfuss, R.J. Pugmire, Modeling Light Gas and Tar Yields from Pyrolysis of Green River Oil Shale Demineralized Kerogen Using the Chemical Percolation Devolatilization Model, Energy and Fuels, 29 (2015) pp. 4921-4926. doi:10.1021/acs.energyfuels.5b01146.
  13. Sheng, C., J.L.T. Azevedo, Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components, Proceedings of the Combustion Institute, 29 (2002) pp. 407-414. doi:10.1016/S1540-7489(02)80054-2.
  14. Fletcher, T.H., H.R. Pond, J. Webster, J. Wooters, L.L. Baxter, Prediction of tar and light gas during pyrolysis of black liquor and biomass, Energy and Fuels, 26 (2012) pp. 3381-3387. doi:10.1021/ef300574n.
  15. Lewis, A.D., T.H. Fletcher, Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model, Energy and Fuels, 27 (2013) pp. 942-953. doi:10.1021/ef3018783.
  16. Fletcher, Thomas H. and Kerstein, A.R., D.M. Pugmire, Ronald J. and Grant, A Chemical Percolation Model for Devolatilization: Summary, Journal of Chemical Information and Modeling, 53 (2013) pp. 1689-1699. doi:10.1017/CBO9781107415324.004.
  17. Jankes, G., O. Cvetković, N. Milovanović, M. Ercegovac, M. Adžić, M. Stamenić, Rapid pyrolysis of serbian soft brown coals, Thermal Science, 13 (2009) pp. 113-126. doi:10.2298/TSCI0901113J.
  18. Stojiljkovic, D., Obrazovanje azotnih oksida pri sagorevanju domacih lignita u sprasenom stanju, Doctoral Thesis, Faculty of Mechanical Engineering, 1999.
  19. Milovanovic, N., The characteristics of the Yugoslav soft brown coals devolatilization process, Faculty of Mechanical Engineering, 1996.
  20. ISO 17246:2010 Coal - Proximate analysis
  21. ISO 17247:2013 Coal - Ultimate analysis
  22. ISO 5071 - Brown coals and lignites - Determination of the volatile matter in the analysis sample, n.d.
  23. Jankes, G., Prilog proucavanju gasifikacije jugoslovenskih lignita, Doctroal Thesis, Faculty of Mechanical Engineering, 1990.
  24. Kissinger, H.E., Variation of peak temperature with heating rate in differential thermal analysis, Journal of Research of the National Bureau of Standards, 57 (1956) pp. 217. doi:10.6028/jres.057.026.
  25. Saxena, S.C., Devolatilization and combustion characteristics of coal particles, Progress in Energy and Combustion Science, 16 (1990) pp. 55-94. doi:10.1016/0360-1285(90)90025-X.
  26. Borah, R.C., P. Ghosh, P.G. Rao, A review on devolatilization of coal in fluidized bed, International Journal of Energy Research, 35 (2011) pp. 929-963. doi:10.1002/er.1833.
  27. Genetti, D., An advanced model of coal devolatilization based on chemical structure, Doctroal Thesis, Brigham Young University, 1999.
  28. Chen, L., C. Zeng, X. Guo, Y. Mao, Y. Zhang, X. Zhang, W. Li, Y. Long, H. Zhu, B. Eiteneer, V. Zamansky, Gas evolution kinetics of two coal samples during rapid pyrolysis, Fuel Processing Technology, 91 (2010) pp. 848-852. doi:10.1016/j.fuproc.2010.02.010.
  29. Fletcher, T.H., A.R. Kerstein, R.J. Pugmire, D.M. Grant, Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields, Energy & Fuels, 4 (1990) pp. 54-60. doi:10.1021/ef00019a010.
  30. Li, S., H. Yang, T.H. Fletcher, M. Dong, Model for the Evolution of Pore Structure in a Lignite Particle during Pyrolysis, Energy and Fuels, 29 (2015) pp. 5322-5333. doi:10.1021/acs.energyfuels.5b00726.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence