THERMAL SCIENCE

International Scientific Journal

ABSORPTION PROFILE OF LASER IMPULSE OF COMPOSITES BASED ON TRANSPARENT MATRIX AND METAL NANOPARTICLES

ABSTRACT
In this work the technique of modeling of optoacoustic signal initiated by laser pulse in composites based on transparent matrix and metal nanoparticles was proposed. It was shown that the time to achieve mechanical equilibrium is significantly lower than the pulse duration, and pressure is proportional to the augmentation of the nanoparticles' temperature. Testing of the modeling technique was carried out on the example of PETN - aluminum nanoparticles composite in two variant with and without taking into account the temperature dependence of the composites' optical properties. Comparison of calculated and experimental dependences of the effective absorption coefficient on the energy density of neodymium laser with pulse duration 14 ns was made. The modeling results are in good agreement with the experimental data only if the temperature dependence of the optical properties is taken into account.
KEYWORDS
PAPER SUBMITTED: 2018-09-06
PAPER REVISED: 2018-10-31
PAPER ACCEPTED: 2018-12-04
PUBLISHED ONLINE: 2019-05-05
DOI REFERENCE: https://doi.org/10.2298/TSCI19S2553N
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Supplement 2, PAGES [S553 - S560]
REFERENCES
  1. Shibib, Kh. S., et al., Analytical Solution of Transient Temperature in Continuous Wave End-Pumped Laser Slab, Thermal Science, 21 (2017), 3, pp. 1223-1230
  2. Panoiu, N. C., et al., Nonlinear Optics in Plasmonic Nanostructures, J. Opt. 20 (2018), 8, 083001
  3. Ros, I., et al., Femtosecond Nonlinear Absorption of Gold Nanoshells at Surface Plasmon Resonance, Phys. Chem. Chem. Phys., 12 (2010), 41, pp. 13692-13698
  4. Ghambari, T., Dorranian, D., Measurement of Third-Order Nonlinear Susceptibility of Au Nanoparticles Doped PVA Film, Optics and Spectroscopy, 119 (2015), 5, pp. 838-848
  5. Sivan, Y., Chu, S.-W., Nonlinear Plasmonics at High Temperatures, Nanophotonics, 6 (2017), 1, pp 317-328
  6. Aduev, B. P., et al., Optiko-Akusticheskie Ehffekty V Tetranitrate Pentaehritrita S Vklyucheniyami Ultradispersnyh Chastic Alyuminiya Pri Impulsnom Lazernom Vozdejstvii, (Optoacoustic Effects in Pentaerythritol Tetranitrate with Ultrafine Aluminum-Particle Inclusions under Pulsed-Laser Action, - in Russian), Optika i Spektroskopiya, 124 (2018), 3, pp. 404-409
  7. Gusev, V. E., Karabutov, A. A., Lazernaya optoakustika (Laser Opto-Acoustics - in Russian), M: Nau-ka, 1991
  8. Gerasimov, S. I., et al., Vozmozhnost Iniciirovaniya Polimersoderzhashchego Ehnergonasyshchennogo Sostava Kompleksnogo Perhlorata Rtuti Luchom Lazernogo Dioda, (A Laser Diode Beam Initiates a High-Energy Mercury Perchlorate-Polymer Complex - in Russian), Pis'ma v Zhurnal Tekhnicheskoi Fiziki, 41 (2015), 7, pp. 66-72
  9. Aduev, B. P., et al., Osobennosti Lazernogo Iniciirovaniya Kompozitov Na Osnove TENa S Vklyucheniyami Ultradispersnyh Chastic Alyuminiya (Laser Initiation of PETN-Based Composites with Additives of Ultrafine Aluminium, Combustion - in Russian), Fizika Goreniya i Vzryva, 52 (2016), 6, pp. 104-110
  10. Burkina, R. S., et al., Iniciirovanie Reakcionno-Sposobnogo Veshchestva Potokom Izlucheniya Pri Ego Pogloshchenii Opticheskimi Neodnorodnostyami Veshchestva (Initiation of a Reactive Material by a Radiation Beam Absorbed by Optical Heterogeneities of the Material - in Russian), Fizika Goreniya i Vzryva, 47 (2011), 5, pp. 95-105
  11. Kalenskii, A. V., et al., Kriticheskie Parametry Mikroochagovoj Modeli Impulsnogo Lazernogo Iniciiro-vaniya Vzryvnogo Razlozheniya Ehnergeticheskih Materialov (Critical Parameters of a Micro-Hotspot Model of the Laser-Pulse Initiation of the Explosive Decomposition of Energetic Materials - in Rus-sian), Khimicheskaya Fizika, 36 (2017), 9, pp. 45-52
  12. Kalenskii, A. V., et al., Kriticheskie Usloviya Iniciirovaniya Reakcii V TENe Pri Lazernom Nagreve Svetopogloshchayushchih Nanochastic (Critical Conditions of Reaction Initiation in the PETN During Laser Heating of Light-Absorbing Nanoparticles - in Russian), Fizika Goreniya i Vzryva, 53 (2017), 2, pp. 107-117
  13. Kalenskii, A. V., et al., Mikroochagovaya Model S Uchetom Zavisimosti Koehfficienta Ehffektivnosti Pogloshcheniya Lazernogo Impulsa Ot Temperatury (Micro-Hot-Spot Model Taking Into Account the Temperature Dependence of the Laser Pulse Absorption Efficiency Factor - in Russian), Khimicheskaya Fizika, 36 (2017), 4, pp. 43-49
  14. Glushkov, D. O., et al., Vliyanie Formy Chasticy Organovodougolnogo Topliva Na Usloviya I Harakter-istiki Ee Zazhiganiya V Potoke Razogretogo Vozduha (Effect of the Shape of an Organic Water-Coal Fuel Particle on the Condition and Characteristics of Its Ignition in a Hot Air Flow - in Russian), Khimicheskaya Fizika, 35 (2016), 11. pp. 14-25
  15. Chumakov, Yu. A., Knyazeva, A. G., Iniciirovanie Reakcii V Okrestnosti Odinochnoj Chasticy Nagrevaemoj SVCH-Izlucheniem (Initiation of Reaction in the Vicinity of a Single Particle Heated by Microwave Radiation - in Russian), Fizika Goreniya i Vzryva, 48 (2012), 2, pp. 24-30
  16. Glushkov, D. O., et al., Zazhiganie Smesevogo Topliva Goryachej Chasticej V Usloviyah Neidealnogo Teplovogo Kontakta (Ignition of a Composite Propellant by a Hot Particle Under Conditions of a Noni-deal Thermal Contact - in Russian), Khimicheskaya Fizika, 34 (2015), 7, pp. 39-45
  17. Olinger, B., Cady H. H., The Hydrostatic Compression of Explosives and Detonation Products to 10 GPa (100 KBars) and their Calculated Shock Compression: Results for PETN, TATB, CO2, and H2O, Proceedings, 6th Int. Detonation Symp., Coronado, Cal., USA, 1976, pp. 700-709
  18. Kaye, G. W. C., Laby, T. H., Tables of Physical and Chemical Constants, Franklin Classics, Lebanon, N. J., USA, 2018
  19. Kalenskii, A. V., et al., Vliyanie Temperatury Na Opticheskie Svojstva Kompozitov Prozrachnaya Mat-rica-Nanochasticy Serebra (Influence of Temperature on Optical Properties of Silver Nanoparticle-Transparent Matrix Composites - in Russian), Zhurnal Prikladnoi Spektroskopii, 83 (2017), 6, pp. 972-978

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence