THERMAL SCIENCE
International Scientific Journal
DROPLET EVAPORATION ON A HEATED STRUCTURED WALL
ABSTRACT
Evaporation of water droplets on a structured surface is studied experimentally. With an increase in the wall temperature Tw from 28 to 70 °С the exponent n increases from 1 to 1.37 in the evaporation law (j = dm/dt ~ R0n, where m is the droplet mass and R0 is the droplet radius). Usually, researchers simulating droplet evaporation consider a linear relationship between the evaporation rate j and the droplet radius R0 (n = 1). This paper shows an increase of the exponent n with a growth of the wall temperature Tw. The diffusion vapor layer on the droplet interface and the boundary air layer on the surface of the heated cylinder with a diameter exceeding the droplet’s one are formed. A neglect of free convection more than 5 times underestimates calculation results compared with experimental data. At droplet evaporation it is necessary to take into account convection in a vapor-gas medium and wall roughness.
KEYWORDS
PAPER SUBMITTED: 2018-05-02
PAPER REVISED: 2018-05-20
PAPER ACCEPTED: 2018-05-20
PUBLISHED ONLINE: 2018-05-13
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 2, PAGES [673 - 681]
- Sirringhaus H. et al., High-resolution inkjet printing of all-polymer transistor circuits, Science 290 2123-2126 (2000).
- Arcamone J. et al., Evaporation of femtoliter sessile droplets monitored with nanomechanical mass sensors, J. Phys. Chem. B 111 (2007) 13020-13027.
- Fang X. et al., Drying of DNA droplets, Langmuir 22 (2006) 6308-6312.
- Wu Y., Modeling and experimental study of vapor phase-diffusion driven sessile drop evaporation, Appl. Therm. Eng. 70 (2014) 560-564.
- Bonaccurso E. et al., Fabrication of microvessels and microlenses from polymers by solvent droplets, Appl. Phys.Lett. 86 (2005) 124101.
- Misyura S.Y., Wall effect on heat transfer crisis, Exp. Therm. Fluid Sci. 70 (2016) 389-396.
- Bogya E.S., Szilagyi B., Kukovecz A., Surface pinning explains the low heat transfer coefficient between water and carbon nanotube film, Carbon 100 (2016) 27-35.
- Carrier O. et al., Evaporation of water: evaporation rate and collective effects, J. Fluid Mech. 789 (2016) 774-786.
- Saada M.A., Chikh S., Tadrist L., Numerical investigation of heat mass transfer of an evaporating sessile drop on a horizontal surface, J. Phys. Fluids 22 (2010) 112115.
- Brutin D., Sobac B., Rigollet F., Le-Niliot C., Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface, Exp. Therm. Fluid Sci. 35 (2011) 521-530.
- Seine K., Wilson S.K., David S., Dunn G.J., Duffy B.R., On the effect of the atmosphere on the evaporation of sessile droplets of water, J. Phys. Fluids 21 (2009).
- Shahidzadeh-Bonn N., Rafaı S., Azouni A., Bonn D., Evaporating droplets, Fluid Mech. 549 (2006) 307-313.
- Mollaret R., Serfiane K., Christy I.R., Veyret D., Experimental and numerical investigation of the evaporation into air of drop on a heated surface, Chem. Eng. Res. Des. 82 (4) (2004) 471-480.
- Dunn G.J., Wilson S.K., Duffy B.R., David S., Seffiane K., The strong influence of substrate conductivity on droplet evaporation, J. Fluid Mech. 623 (2009) 329.
- Mebrouk Ait Saada, Salah Chikh, Lounes Tadrist, Numerical investigation of heat mass transfer of an evaporating sessile drop on a horizontal surface, J. Phys.Fluids 22 (2010) 112115.
- Murisic N., Kondic L., On evaporation of sessile drops with moving contact lines, J. Fluid. Mech. 679 (2011) 219-246.
- David S., Sefiane K., Tadrist L., Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops, Colloids Surfaces 298 (2007) 108-114.
- Hu H., Larson R.G., Evaporation of a Sessile Droplet on a Substrate. J. Phys. Chem. B 106 (2002) 1334-1344.
- Bleiker G., Specht E., Film evaporation of drops of different shape above a horizontal plate. Int.J. of Therm.Sci. 46 (2007) 835-841.
- Birdi K.S., Vu D.T., Winter A., A study of the evaporation rates of small water drop placed on a solid surface, J. Phys. Chem. 93 (1989) 3702-3703.
- Toda S., A study of mist cooling. 2nd report: theory of mist cooling and its fundamental experiments, Heat Transfer Jpn. Res. 1 (1972) 1-42.
- Bonacina C., Giudice S.D., Comini G., Dropwise evaporation, Trans. ASME. J. Heat Transfer 101 (1979) 441-446.
- Wachters L.H., Westerling N.A., The heat transfer from a hot wall to impinging water drops in thespheroidal state, Chem. Eng. Science 21 (1966) 1047-1056.
- Tartarini P., Corticelli M.A., Tarozzi L., Dropwise cooling: experimental tests by infrared thermography and numerical simulations, Applied Thermal Engineering 29 (2009)1391-1397.
- Seki M., Kawamura H., Sanokawa K., Transient temperature profile of a hot wall due to an impinging liquid droplet, ASME J. Heat Transfer 100 (1978) 167-169.
- Bussmann M., Chandra S., Mostaghimi J., Modeling the splash of a droplet impacting a solid surface, Physics of fluids12 (2000) 3121-3132.
- Senda Jiro, Yamada Koji, Fujimoto Hajime, Hideo Miki Hideo. The Heat-Transfer Characteristics of a small Droplet Impinging upon a Hot Surface, JSME International Journal, Series II 31(1988) 105-111.
- Pasandideh-Fard M., Qiao Y.M., Chandra S., Mostaghimi J., Capillary effects during droplet impact on solid surface, Phys. Fluids 8 (1996) 650-659.
- Nakoryakov V.E., Misyura S.Y., Bubble boiling in droplets of water and lithium bromide water solution, Journal of Engineering Thermophysics 25 (1) (2016) 24-31.
- Gau, H. et al. Liquid morphologies on structured surfaces: From microchannels to microchips, Science 283 (1999) 46-49.
- Carle F., Contribution of convective transport to evaporation of sessile droplets: Empirical model, Int. J. of Thermal Sciences 101 (2016) 35-47.
- Valiullin T.R., Strizhak P.A., Influence of the shape of soaring particle based on coal-water slurry containing petrochemicals on ignition characteristics, Thermal Science 21 (2017) 1399-1408.
- Voitkov I.S., Volkov R.S., Strizhak P.A., Temperature of gases in trace of water droplets during their motion in a flame, Thermal Science (2017), DOI 10.2298/TSCI160302020V.
- Volkov R.S., Vysokomornaya O.V., Strizhak P.A., Fire extinction of forest fuels by droplets and water film, Thermal Science (2017), DOI 10.2298/TSCI160930012V.
- Chandramohan A., Weibel J.A., Garimella S.V., Spatiotemporal infrared measurement of interface temperatures during water droplet evaporation on a nonwetting substrate, Appl. Phys. Lett. 110 (2017) 041605.
- Misyura S.Y., Contact angle and droplet heat transport during evaporation on structured and smooth surfaces of heated wall. Applied Surface Science 414 (2017) 188-196.
- Lebedev et. al., Effect of flow acceleration and initial turbulence level on velocity fluctuations, Fluid dynamics 28 (1993) 624-629.
- Misyura S.Y., The influence of porosity and structural parameters on different kinds of gas hydrate dissociation, Scientific Reports 6 (2016) 30324.
- Kutateladze S.S., Fundamentals of Heat Transfer Theory, Atomizdat, Moscow, 1979.
- Borishansky V.M., Heat transfer to liquid, flowing free from the surface heated above the temperature of boiling. In coll. "The Problems of Heat Transfer at a Change of Substance Aggregate State", ed. by S.S. Kutateladze. - Moscow-Leningrad: Gosudarstvennoe Energeticheskoe Izd.,1953.