THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

DROPLET EVAPORATION ON A HEATED STRUCTURED WALL

ABSTRACT
Evaporation of water droplets on a structured surface is studied experimentally. With an increase in the wall temperature Tw from 28 to 70 °С the exponent n increases from 1 to 1.37 in the evaporation law (j = dm/dt ~ R0n, where m is the droplet mass and R0 is the droplet radius). Usually, researchers simulating droplet evaporation consider a linear relationship between the evaporation rate j and the droplet radius R0 (n = 1). This paper shows an increase of the exponent n with a growth of the wall temperature Tw. The diffusion vapor layer on the droplet interface and the boundary air layer on the surface of the heated cylinder with a diameter exceeding the droplet’s one are formed. A neglect of free convection more than 5 times underestimates calculation results compared with experimental data. At droplet evaporation it is necessary to take into account convection in a vapor-gas medium and wall roughness.
KEYWORDS
PAPER SUBMITTED: 2018-05-02
PAPER REVISED: 2018-05-20
PAPER ACCEPTED: 2018-05-20
PUBLISHED ONLINE: 2018-05-13
DOI REFERENCE: https://doi.org/10.2298/TSCI180502147M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Issue 2, PAGES [673 - 681]
REFERENCES
  1. Sirringhaus H. et al., High-resolution inkjet printing of all-polymer transistor circuits, Science 290 2123-2126 (2000).
  2. Arcamone J. et al., Evaporation of femtoliter sessile droplets monitored with nanomechanical mass sensors, J. Phys. Chem. B 111 (2007) 13020-13027.
  3. Fang X. et al., Drying of DNA droplets, Langmuir 22 (2006) 6308-6312.
  4. Wu Y., Modeling and experimental study of vapor phase-diffusion driven sessile drop evaporation, Appl. Therm. Eng. 70 (2014) 560-564.
  5. Bonaccurso E. et al., Fabrication of microvessels and microlenses from polymers by solvent droplets, Appl. Phys.Lett. 86 (2005) 124101.
  6. Misyura S.Y., Wall effect on heat transfer crisis, Exp. Therm. Fluid Sci. 70 (2016) 389-396.
  7. Bogya E.S., Szilagyi B., Kukovecz A., Surface pinning explains the low heat transfer coefficient between water and carbon nanotube film, Carbon 100 (2016) 27-35.
  8. Carrier O. et al., Evaporation of water: evaporation rate and collective effects, J. Fluid Mech. 789 (2016) 774-786.
  9. Saada M.A., Chikh S., Tadrist L., Numerical investigation of heat mass transfer of an evaporating sessile drop on a horizontal surface, J. Phys. Fluids 22 (2010) 112115.
  10. Brutin D., Sobac B., Rigollet F., Le-Niliot C., Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface, Exp. Therm. Fluid Sci. 35 (2011) 521-530.
  11. Seine K., Wilson S.K., David S., Dunn G.J., Duffy B.R., On the effect of the atmosphere on the evaporation of sessile droplets of water, J. Phys. Fluids 21 (2009).
  12. Shahidzadeh-Bonn N., Rafaı S., Azouni A., Bonn D., Evaporating droplets, Fluid Mech. 549 (2006) 307-313.
  13. Mollaret R., Serfiane K., Christy I.R., Veyret D., Experimental and numerical investigation of the evaporation into air of drop on a heated surface, Chem. Eng. Res. Des. 82 (4) (2004) 471-480.
  14. Dunn G.J., Wilson S.K., Duffy B.R., David S., Seffiane K., The strong influence of substrate conductivity on droplet evaporation, J. Fluid Mech. 623 (2009) 329.
  15. Mebrouk Ait Saada, Salah Chikh, Lounes Tadrist, Numerical investigation of heat mass transfer of an evaporating sessile drop on a horizontal surface, J. Phys.Fluids 22 (2010) 112115.
  16. Murisic N., Kondic L., On evaporation of sessile drops with moving contact lines, J. Fluid. Mech. 679 (2011) 219-246.
  17. David S., Sefiane K., Tadrist L., Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops, Colloids Surfaces 298 (2007) 108-114.
  18. Hu H., Larson R.G., Evaporation of a Sessile Droplet on a Substrate. J. Phys. Chem. B 106 (2002) 1334-1344.
  19. Bleiker G., Specht E., Film evaporation of drops of different shape above a horizontal plate. Int.J. of Therm.Sci. 46 (2007) 835-841.
  20. Birdi K.S., Vu D.T., Winter A., A study of the evaporation rates of small water drop placed on a solid surface, J. Phys. Chem. 93 (1989) 3702-3703.
  21. Toda S., A study of mist cooling. 2nd report: theory of mist cooling and its fundamental experiments, Heat Transfer Jpn. Res. 1 (1972) 1-42.
  22. Bonacina C., Giudice S.D., Comini G., Dropwise evaporation, Trans. ASME. J. Heat Transfer 101 (1979) 441-446.
  23. Wachters L.H., Westerling N.A., The heat transfer from a hot wall to impinging water drops in thespheroidal state, Chem. Eng. Science 21 (1966) 1047-1056.
  24. Tartarini P., Corticelli M.A., Tarozzi L., Dropwise cooling: experimental tests by infrared thermography and numerical simulations, Applied Thermal Engineering 29 (2009)1391-1397.
  25. Seki M., Kawamura H., Sanokawa K., Transient temperature profile of a hot wall due to an impinging liquid droplet, ASME J. Heat Transfer 100 (1978) 167-169.
  26. Bussmann M., Chandra S., Mostaghimi J., Modeling the splash of a droplet impacting a solid surface, Physics of fluids12 (2000) 3121-3132.
  27. Senda Jiro, Yamada Koji, Fujimoto Hajime, Hideo Miki Hideo. The Heat-Transfer Characteristics of a small Droplet Impinging upon a Hot Surface, JSME International Journal, Series II 31(1988) 105-111.
  28. Pasandideh-Fard M., Qiao Y.M., Chandra S., Mostaghimi J., Capillary effects during droplet impact on solid surface, Phys. Fluids 8 (1996) 650-659.
  29. Nakoryakov V.E., Misyura S.Y., Bubble boiling in droplets of water and lithium bromide water solution, Journal of Engineering Thermophysics 25 (1) (2016) 24-31.
  30. Gau, H. et al. Liquid morphologies on structured surfaces: From microchannels to microchips, Science 283 (1999) 46-49.
  31. Carle F., Contribution of convective transport to evaporation of sessile droplets: Empirical model, Int. J. of Thermal Sciences 101 (2016) 35-47.
  32. Valiullin T.R., Strizhak P.A., Influence of the shape of soaring particle based on coal-water slurry containing petrochemicals on ignition characteristics, Thermal Science 21 (2017) 1399-1408.
  33. Voitkov I.S., Volkov R.S., Strizhak P.A., Temperature of gases in trace of water droplets during their motion in a flame, Thermal Science (2017), DOI 10.2298/TSCI160302020V.
  34. Volkov R.S., Vysokomornaya O.V., Strizhak P.A., Fire extinction of forest fuels by droplets and water film, Thermal Science (2017), DOI 10.2298/TSCI160930012V.
  35. Chandramohan A., Weibel J.A., Garimella S.V., Spatiotemporal infrared measurement of interface temperatures during water droplet evaporation on a nonwetting substrate, Appl. Phys. Lett. 110 (2017) 041605.
  36. Misyura S.Y., Contact angle and droplet heat transport during evaporation on structured and smooth surfaces of heated wall. Applied Surface Science 414 (2017) 188-196.
  37. Lebedev et. al., Effect of flow acceleration and initial turbulence level on velocity fluctuations, Fluid dynamics 28 (1993) 624-629.
  38. Misyura S.Y., The influence of porosity and structural parameters on different kinds of gas hydrate dissociation, Scientific Reports 6 (2016) 30324.
  39. Kutateladze S.S., Fundamentals of Heat Transfer Theory, Atomizdat, Moscow, 1979.
  40. Borishansky V.M., Heat transfer to liquid, flowing free from the surface heated above the temperature of boiling. In coll. "The Problems of Heat Transfer at a Change of Substance Aggregate State", ed. by S.S. Kutateladze. - Moscow-Leningrad: Gosudarstvennoe Energeticheskoe Izd.,1953.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence