International Scientific Journal


In this paper “well-to-pump” environmental analysis of pyrolytic diesel from Miscanthus gigantheus is performed. The average annual yield of Miscanthus from III-V year of cultivation on 1 ha of chernozem soil in Serbia (23.5 t) is considered as an input for the process. Two pyrolytic diesel pathways are considered: distributed pyrolytic pathway with external hydrogen production (from natural gas) and integrated pyrolytic pathway with internal hydrogen production (from pyrolytic oil). and are compared to a conventionally produced diesel pathway. The results of the analysis reveal that integrated-internal pyrolytic diesel pathway has lowest resources consumption and lowest pollutant emissions. Compared to conventionally produced diesel, integrated-internal pyrolysis pathway consumes 80% less of fossil fuels, and 92% more of renewables, has 90% lower global warming potential, 30% lower terrestrial acidification potential but 38% higher particulate matter formation potential. Compared to the distributed-external pathway, 88% less fossil fuels, and 36% less renewables are consumed in the integrated-internal pathway, global warming potential is 97% lower, terrestrial acidification is 20% lower, and particulate matter formation is 49% lower. Nevertheless, this pathway has high coal and hydroelectrical power consumption due to electricity production and high emissions of particulate matter, CO2, SOx, and N2O. Another drawback of this production pathway is the low yield of diesel obtained (38% lower than in distributed-external pathway). With this regard, it is still hard to designate production of diesel from fast pyrolysis of Miscanthus as a more environmentally friendly replacement of the conventional production diesel pathway.
PAPER REVISED: 2018-03-21
PAPER ACCEPTED: 2018-03-22
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Issue 1, PAGES [365 - 378]
  1. E.D. Larson, Biofuel production technologies: status, prospects and implications for trade and development, New York and Geneva, 2008. doi:UNCTAD/DITC/TED/2007/10.
  2. M.M. Wright, J. a. Satrio, R.C. Brown, D.E. Daugaard, D.D. Hsu, Techno-economic analysis of biomass fast pyrolysis to transportation fuels, 2010. doi:10.1016/j.fuel.2010.07.029.
  3. A. V. Bridgwater, S. Czernik, J. Piskorz, An Overview of Fast Pyrolysis, Prog. Thermochem. Biomass Convers. (2008) 977-997. doi:10.1002/9780470694954.ch80.
  4. T.R. Brown, R. Thilakaratne, R.C. Brown, G. Hu, Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing, Fuel. 106 (2013) 463-469. doi:10.1016/j.fuel.2012.11.029.
  5. A. V. Bridgwater, Upgrading Fast Pyrolysis Liquids, 2011. doi:10.1002/9781119990840.ch6.
  6. J. Han, A. Elgowainy, I. Palou-Rivera, J.B. Dunn, M.Q. Wang, Well-to-Wheels Analysis of Fast Pyrolysis Pathways with GREET, (2011) 76. doi:ANL/ESD/11-8.
  7. W.N.R.W. Isahak, M.W.M. Hisham, M.A. Yarmo, T.Y. Yun Hin, A review on bio-oil production from biomass by using pyrolysis method, Renew. Sustain. Energy Rev. 16 (2012) 5910-5923. doi:10.1016/j.rser.2012.05.039.
  8. C.E. Greenhalf, D.J. Nowakowski, A.B. Harms, J.O. Titiloye, A. V. Bridgwater, A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products, Fuel. 108 (2013) 216-230. doi:10.1016/j.fuel.2013.01.075.
  9. J. Han, A. Elgowainy, J.B. Dunn, M.Q. Wang, Life cycle analysis of fuel production from fast pyrolysis of biomass, Bioresour. Technol. 133 (2013) 421-428. doi:10.1016/j.biortech.2013.01.141.
  10. J.F. Peters, D. Iribarren, J. Dufour, Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading, Fuel. 139 (2015) 441-456. doi:10.1016/j.fuel.2014.09.014.
  11. Q. Dang, C. Yu, Z. Luo, Environmental life cycle assessment of bio-fuel production via fast pyrolysis of corn stover and hydroprocessing, Fuel. 131 (2014) 36-42. doi:10.1016/j.fuel.2014.04.029.
  12. S. Jones, C. Valkenburg, C. Walton, Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case, Energy. (2009) 76. doi:PNNL-22684.pdf.
  13. P. Steele, M.E. Puettmann, V.K. Penmetsa, J.E. Cooper, Life-Cycle Assessment of Pyrolysis Bio-Oil Production*, For. Prod. J. 62 (2012) 326-334. doi:10.13073/FPJ-D-12-00016.1.
  14. N. Kauffman, D. Hayes, R. Brown, A life cycle assessment of advanced biofuel production from a hectare of corn, Fuel. 90 (2011) 3306-3314. doi:10.1016/j.fuel.2011.06.031.
  15. D.D. Hsu, Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing, Biomass and Bioenergy. 45 (2012) 41-47. doi:10.1016/j.biombioe.2012.05.019.
  16. D. Iribarren, J.F. Peters, J. Dufour, Life cycle assessment of transportation fuels from biomass pyrolysis, Fuel. 97 (2012) 812-821. doi:10.1016/j.fuel.2012.02.053.
  17. I. Lewandowski, U. Schmidt, Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach, Agric. Ecosyst. Environ. 112 (2006) 335-346. doi:10.1016/j.agee.2005.08.003.
  18. E.M.W. Smeets, I.M. Lewandowski, A.P.C. Faaij, The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting, Renew. Sustain. Energy Rev. 13 (2009) 1230-1245. doi:10.1016/j.rser.2008.09.006.
  19. F. Morandi, A. Perrin, H. Østergård, Miscanthus as energy crop: Environmental assessment of a miscanthus biomass production case study in France, J. Clean. Prod. 137 (2016) 313-321. doi:10.1016/j.jclepro.2016.07.042.
  20. S.C. Aravindhakshan, F.M. Epplin, C.M. Taliaferro, Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity, Biomass and Bioenergy. 34 (2010) 1375-1383. doi:10.1016/j.biombioe.2010.04.017.
  21. R. Parajuli, K. Sperling, T. Dalgaard, Environmental performance of Miscanthus as a fuel alternative for district heat production, Biomass and Bioenergy. 72 (2015) 104-116. doi:10.1016/j.biombioe.2014.11.011.
  22. M. Mantineo, G.M. D'Agosta, V. Copani, C. Patane, S.L. Cosentino, Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment, F. Crop. Res. 114 (2009) 204-213. doi:10.1016/j.fcr.2009.07.020.
  23. Ž. Dželetović, J. Maksimović, I. Živanović, Prinos Miscanthus × giganteus gajenog na dve lokacije u Srbiji (Yield of Miscanthus × giganteus during crop establishment at two locations in Serbia), J. Process. Energy Agric. 18 (2014) 62-64.
  24. Ž. Dželetović, I. Živanović, R. Pivić, J. Maksimović, Water supply and biomass production of Miscanthus × giganteus, in: E.R. Saljnikov (Ed.), Proc. 1st Int. Congr. Soil Sci. XIII Natl. Congr. Soil Sci. Sept. 23-26th, Soil Science Society of Serbia/Soil Science Institute, Belgrade, Serbia, 2013: pp. 435-450.
  25. Ž. Dželetović, N. Mihailović, I. Živanović, Prospects of using bioenergy crop Miscanthus × giganteus in Serbia, Mater. Process. Energy Commun. Curr. Res. Technol. Dev. (2013) 360-370.
  26. Ž.S. Dželetović, Mискантус (Miscanthus × giganteus Greef et Deu.) - производне одлике и продуктивност биомасе (Miscanthus - production quality and biomass productivity), Задужбина Андрејевић, 2012.
  27. E.M. Hodgson, R. Fahmi, N. Yates, T. Barraclough, I. Shield, G. Allison, A. V. Bridgwater, I.S. Donnison, Miscanthus as a feedstock for fast-pyrolysis: Does agronomic treatment affect quality?, Bioresour. Technol. 101 (2010) 6185-6191. doi:10.1016/j.biortech.2010.03.024.
  28. C.E. Greenhalf, D.J. Nowakowski, N. Yates, I. Shield, A. V. Bridgwater, The influence of harvest and storage on the properties of and fast pyrolysis products from Miscanthus x giganteus, Biomass and Bioenergy. 56 (2013) 247-259. doi:10.1016/j.biombioe.2013.05.007.
  29. E.M. Hodgson, D.J. Nowakowski, I. Shield, A. Riche, A. V. Bridgwater, J.C. Clifton-Brown, I.S. Donnison, Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals, Bioresour. Technol. 102 (2011) 3411-3418. doi:10.1016/j.biortech.2010.10.017.
  30. J. Corton, I.S. Donnison, M. Patel, L. Bühle, E. Hodgson, M. Wachendorf, A. Bridgwater, G. Allison, M.D. Fraser, Expanding the biomass resource: Sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes, Appl. Energy. 177 (2016) 852-862. doi:10.1016/j.apenergy.2016.05.088.
  31. S.W. Banks, D.J. Nowakowski, A. V. Bridgwater, Fast pyrolysis processing of surfactant washed Miscanthus, Fuel Process. Technol. 128 (2014) 94-103. doi:10.1016/j.fuproc.2014.07.005.
  32. M. Mos, S.W. Banks, D.J. Nowakowski, P.R.H. Robson, A. V. Bridgwater, I.S. Donnison, Impact of Miscanthus x giganteus senescence times on fast pyrolysis bio-oil quality, Bioresour. Technol. 129 (2013) 335-342. doi:10.1016/j.biortech.2012.11.069.
  33. S. Yorgun, Fixed-Bed Pyrolysis of Miscanthus x giganteus: Product Yields and Bio-Oil Characterization, Energy Sources. 25 (2003) 779-790.
  34. H. Heo, H. Park, J. Yim, J. Sohn, J. Park, S. Kim, C. Ryu, J. Jeon, Y. Park, Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens, Bioresour. Technol. 101 (2010) 3672-3677.
  35. W. Melligan, F., Auccaise, R., Novotny, E.H., Leahy, J.J., Hayes, M.H.B., Kwapinski, Pressurised pyrolysis of Miscanthus using a fixed bed reactor, Bioresour. Technol. 102 (2011) 3466-3470.
  36. J.Y. Kim, S. Oh, H. Hwang, Y.H. Moon, J.W. Choi, Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis, Energy. 76 (2014) 284-291. doi:10.1016/
  37. M. Perić, M. Komatina, B. Bugarski, D. Antonijević, Best Practices of Biomass Energy Life Cycle Assesment and Possible Applications in Serbia-review paper, Croat. J. For. Eng. 37 (2016) 375-390.
  38. GREET®, Argonne Natl. Lab. IL, USA. (n.d.).
  39. S. Oljača, M. Oljača, D. Kovačević, Đ. Glamočlija, Ekološke posledice upotrebe biljaka za dobijanje energije (Environmental consequences of plant utilization for energy), Agric. Eng. 32 (2007) 91-97.
  40. M.M. Ševarlić, Popis poljoprivrede 2012 - Poljoprivredno zemljište u Republici Srbiji (Census of Agriculture 2012 - Agriculture land in the Republic of Serbia), Belgrade, 2015. doi:10.1017/CBO9781107415324.004.
  41. Ž.S. Dželetović, Miskantus (Miscanthus x giganteus Greef et Deu.) - proizvodne odlike i produktivnost biomase, Zaduzbina Andrejevic, Beograd, 2012.
  42. E. Smeets, I. Lewandowski, A. Faaij, E.M.W. Smeets, I.M. Lewandowski, Costs and environmental performance of miscanthus biomass supply chains in different European regions production and supply chains in a European setting, (n.d.). doi:10.1016/j.rser.2008.09.006.
  43. S. Mani, L.G. Tabil, S. Sokhansanj, Grinding performance and physical properties of wheat and barley straws , corn stover and switchgrass, 27 (2004) 339-352. doi:10.1016/j.biombioe.2004.03.007.
  44. M. Acaroglu, A.S. Aksoy, The cultivation and energy balance of Miscanthus  giganteus production in Turkey, Biomass and Bioenergy. 29 (2005) 42-48. doi:10.1016/j.biombioe.2005.01.002.
  45. IPCC, Climate Change 2007 Synthesis Report, 2007. doi:10.1256/004316502320517344.
  46. M. Goedkoop, R. Heijungs, A. De Schryver, J. Struijs, R. van Zelm, ReCiPe 2008. A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation, 2013.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence