THERMAL SCIENCE
International Scientific Journal
NUMERICAL STUDY OF INLET CROSS-SECTION EFFECT ON OBLIQUE FINNED MICROCHANNEL HEAT SINK
ABSTRACT
The current study is focused on the heat transfer and flow characteristics of an oblique finned micro-channel heat sink with different inlet cross-sections. Water and Al2O3-water nanofluid with 0.25% volume fraction were used as heat trans¬fer fluids. The oblique finned micro-channel heat sinks of size 48 × 80 mm were designed with three different inlet cross-sections, namely square, semicircle and trapezoidal. The ANSYS FLUENT simulations validated with the aid of an existing experimental work. The flow regime in micro-channel heat sink is constrained to laminar flow in the study. The three inlet cross-sections have been investigated by varying Reynolds number for Water and Al2O3-water nanofluid. The trapezoidal cross-section with average heat transfer rate 3.35% and pressure drop 8.6% is more efficient than other cross-sections due to larger wall area and effective entrance length. The oblique finned micro-channel heat sink with the trapezoidal cross-section is suitable for the micro-electronic cooling systems.
KEYWORDS
PAPER SUBMITTED: 2016-11-19
PAPER REVISED: 2017-05-23
PAPER ACCEPTED: 2017-05-28
PUBLISHED ONLINE: 2017-06-04
THERMAL SCIENCE YEAR
2018, VOLUME
22, ISSUE
Issue 6, PAGES [2747 - 2757]
- Shanglong XU, Yihao WU, Qiyu CA, Lili YANG, and Yue Li.,Optimization of the thermal performance of multi-layer silicon microchannel heat sinks, Thermal Science,20,(2016),6, pp. 2001-2013.
- Bladimir Ramos-Alvarado, Peiwen Li, Hong Liu, Abel Hernandez-Guerrero,CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells,Applied Thermal Engineering,31 (2011),pp. 2494-2507
- Mushtaq I. Hasan, Rageba A.A.,Yaghoubib M, Homayon Homayoni, Influence of channel geometry on the performance of a counter flow microchannel heat exchanger,International Journal of Thermal Sciences, 48(2009),pp.1607-1618
- QuWeilin, Gh. Mohiuddin Mala, Li Dongqing, Pressure-driven water flows in Trapezoidal silicon microchannels. International Journal of Heat and Mass Transfer, 43(2000), pp.353-364
- Navin Raja Kuppusamy, H.A. Mohammed, C.W. Lim, Numerical investigation of Trapezoidal grooved microchannel heat sink using nanofluids,ThermochimicaActa 573(2013), pp.39- 56
- Yue-Tzu Yang, Kuo-Teng Tsai, Yi-HsienWang, Shih-Han Lin, Numerical study of microchannel heat sink performance using nanofluids,International Communications in Heat and Mass Transfer 57(2014), pp. 27-35
- Selvakumar. P, S. Suresh, Convective performance of CuO/water nanofluid in an electronic heat sink, Experimental Thermal and Fluid Science 40 (2012), pp. 57-63
- Ehsan Ebrahimnia-Bajestan, Hamid Niazmand, Weerapun Duangthongsuk, Somchai Wongwises, Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, International Journal of Heat and Mass Transfer 54(2011),pp. 4376-4388
- Dorin Lelea, The performance evaluation of Al2O3/water nanofluid flow and heat transfer microchannel heat sink, International Journal of Heat and Mass Transfer 54(2011),pp. 3891-3899
- Tong-Bou Chang, Siou-CiSyu, Yen-Kai Yang,Effects of particle volume fraction on spray heat transfer performance of Al2O3-water nanofluid, International Journal of Heat and Mass Transfer 55 (2012), pp. 1014-1021
- Amir Shalchi-Tabrizi, Hamid Reza Seyf,Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink, International Journal of Heat and Mass Transfer 55(2012), pp. 4366-4375
- Mohammad Kalteh, Abbas Abbassi, Majid Saffar-Avval, ArjanFrijns, Anton Darhuber, Jens Harting, Experimental and numerical investigation of nanofluid forced convection inside a widemicro channel heat sink, Applied Thermal Engineering 36(2012), pp. 260-268
- Changwei Pang, Jung-Yeul Jung, Jae Won Lee, Yong Tae Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles, International Journal of Heat and Mass Transfer 55(2012), pp. 5597-5602
- Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Chun-Yen Chang, Heat transfer enhancement in microchannel heat sinks using nanofluids, International Journal of Heat and Mass Transfer 55(2012), pp. 2559-2570
- Mohammed H.A, P. Gunnasegaran, N.H. Shuaib,Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks,International Communications in Heat and Mass Transfer 38(2011), pp. 194-201
- Mahbubul I.M, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids,International Journal of Heat and Mass Transfer 55 (2012), pp. 874-885
- FaisalsA. Siddiqui, EngrSarbadanamDasgupta, Amir Fartaj,Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow microchannel heat exchanger,International journal of heat and fluid flow 33(2012), pp. 207-219
- Xiang-fei Yu, Chun-ping Zhang, Jyh-tong Teng, Su-yi Huang, Shi-ping Jin, Yi-fuLian, Ching-hung Cheng, Ting-ting Xu, Jiann-Cherng Chu, Yaw-Jen Chang, Thanhtrung Dang, Ralph Greifd, A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods, International journal of heat and mass transfer 55 (2012), pp. 7499-7507
- H. Ganapathy, A. Shooshtari, K. Choo, S. Dessiatoun, M. Alshehhi, M. Ohadi, Volume of fluidbased numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels, International Journal of Heat and Mass Transfer 65 (2013), pp. 62-72
- Ercan M. Dede, Yan Liu, Experimental and numerical investigation of a multi-pass branching microchannel heat sink,Applied Thermal Engineering 55(2013), pp. 51-60
- ShiveDayal Pandey, V.K. Nema, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger,Experimental Thermal and Fluid Science 38 (2012), pp. 248-256
- Yan. Fan, PohSeng Lee, Li-Wen Jin, BengWah Chua,A simulation and experimental study of fluid flow and heat transfer on cylindrical oblique-finned heat sink,International Journal of Heat and Mass Transfer 61 (2013), pp. 62-72
- Lei Chai ,Guo Dong Xia, Hua Sheng Wang, Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls, International Journal of Heat and Mass Transfer 97 (2016), pp.1069-1080.