THERMAL SCIENCE
International Scientific Journal
NUMERICAL METHOD TO A CLASS OF BOUNDARY VALUE PROBLEMS
ABSTRACT
A class of boundary value problems can be transformed uniformly to a least square problem with Toeplitz constraint. Conjugate gradient least square, a matrix iteration method, is adopted to solve this problem, and the solution process is elucidated step by step so that the example can be used as a paradigm for other applications.
KEYWORDS
PAPER SUBMITTED: 2017-02-20
PAPER REVISED: 2017-10-10
PAPER ACCEPTED: 2017-10-18
PUBLISHED ONLINE: 2018-09-10
THERMAL SCIENCE YEAR
2018, VOLUME
22, ISSUE
Issue 4, PAGES [1877 - 1883]
- Liu, X. Y., et al., Circulant Matrix and Conformal Mapping for Solving Partial Differential Equations, Computers & Mathematics with Applications, 68 (2014), 3, pp. 67-76
- He, J.-H., Effect on Temperature on Surface Tension of a Bubble and Hierarchical Ruptured Bubbles for Nanofiber Fabrication, Thermal Science, 16 (2012), 1, pp. 327-330
- He, J.-H., Variational Iteration Method - a Kind of Non-Linear Analytical Technique: Some Examples, International Journal of Non-Linear Mechanics, 34 (1999), 4, pp. 699-708
- Salimi, S., et al., An Analytical Solution to the Thermal Problems with Varying Boundary Conditions Around a Moving Source, Applied Mathematical Modelling, 40 (2016), 13-14, pp. 6690-6707
- Abassy T. A., et al., Toward a Modified Variational Iteration Method, Journal of Computational and Applied Mathematics, 207 (2007), 1, pp. 137-147
- Lu, J. F., Numerical Analysis of the (2+1)-Dimensional Boiti-Leon-Pempinelli Equation, Thermal Sci-ence, 21 (2017), 4, pp. 1657-1663
- Golub, G. H., Van Loan, C. F., Matrix Computations, in: Special Linear Systems (3rd ed; Cha. 4), Johns Hopkins University Press, Baltimore, Md., USA, 3rd edition, 1996
- Chan, R. H., Jin, X. Q., An Introduction to Iterative Toeplitz Solvers, Society for Industrial and Applied Mathematics, Philadelphia, Penn, USA, 2007
- Chan, T. F., Hansen, P., A Look-Ahead Levinson Algorithm for Indefinite Toeplitz Systems, SIAM J. Matrices Anal. Appl. 13 (1992), 2, pp. 490-506
- Carmona, A., The Inverses of Some Circulant Matrices, Applied Mathematics and Computation, 270 (2015), 1, pp. 785-793
- Kailath, T., Sayed, A. H., Displacement Structure: Theory and Applications, SIAM Reviews, 37 (1995), 3, pp. 297-386
- Fausett, D. W., Fulton, C. T., Large Least Squares Problems Involving Kronecker Products, SIAM J. Matrix Anal. Appl. 15 (1994), 1, pp. 219-227
- Hestenes, M. R., Stiefel, E., Methods of Conjugate Gradients for Solving Linear System, J. Res. Nat. Bur. Stand. 49 (1952), 1, pp. 409-436
- Stiefel, E., Stabilization without using Gaussian Normal Equations (in German) Wiss. Z. Tech. Hochsch. Dresden, 2 (1952/53), pp. 441-442
- Paige, C. C., Saunders, A., Sparse Linear Equations and Sparse Least Squares Problems, ACM Transac-tions on Mathematical Software, 8 (1982), 2, pp. 195-209