THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

A NOVEL SOLUBILITY MODEL IN A SUPERCRITICAL CO2

ABSTRACT
This paper gives a semi-empirical formula for calculation of solubility of dyestuff in a supercritical CO2 by dimensionless analysis, the obtained scaling law reveals that the solubility depends mainly on pressure and density of the supercritical CO2.
KEYWORDS
PAPER SUBMITTED: 2017-05-04
PAPER REVISED: 2017-12-23
PAPER ACCEPTED: 2017-12-23
PUBLISHED ONLINE: 2018-09-10
DOI REFERENCE: https://doi.org/10.2298/TSCI1804853Q
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 4, PAGES [1853 - 1856]
REFERENCES
  1. Zhang, J., et al., Green Dyeing of Cotton Fabrics by Supercritical Carbon Dioxide, Thermal Science, 19 (2015), 4, pp. 1283-1286
  2. Guo, D., et al., Investigation on Steady and Unsteady Performance of a SCO2 Centrifugal Compressor with Splitters, Thermal Science, 21 (2017), S1, pp. S185-S192
  3. Zhang, J., et al., Dyeing Behavior Prediction of Cotton Fabrics in Supercritical CO2, Thermal Science, 21 (2017), 4, pp. 1739-1744
  4. Zheng, H. D., et al., Mass Transfer of Disperse Red 153 and its Crude Dye in Supercritical CO2 Fluid, Thermal Science, 21 (2017), 4, pp. 745-1749
  5. Senyay-Oncel, D., Yesil-Celiktas, O., Characterization, Immobilization, and Activity Enhancement of Cellulose Treated with Supercritical CO2, Cellulose, 22 (2015), 6, pp. 3619-3631
  6. Russler, A., et al., AKD-Modification of Bacterial Cellulose Aerogels in Supercritical CO2, Cellulose, 19 (2012), 4, pp. 1337-1349
  7. Mendez-Santiago, J., Teja, A. S., Solubility of Solids in Supercritical Fluids, Fluid Phase Equilibria, 158-160 (1999), June, pp. 501-510
  8. Kumar, S. K., Johnston, K. P., Modelling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable, The Journal Supercrit Fluids, 1 (1988), 1, pp. 15-22
  9. Sung, H. D., Shim, J. J., Solubility of CI Disperse Red 60 and CI Disperse Blue 60 in Supercritical Car-bon Dioxide, J Chem Eng Data , 44 (1999), 5, pp. 985-989
  10. Shinoda, T., Tamura, K., Solubilities of C. I. Disperse Red 1 and C. I. Disperse Red 13 in Supercritical Carbon Dioxide, Fluid Phase Equilibria, 213 (2003), 1-2, pp. 115-123
  11. Tamura, K., Alwi, R. S., Solubility of Anthraquinone Derivatives in Supercritical Carbon Dioxide, Dyes and Pigments, 113 (2015), Feb., pp. 351-356
  12. Span, R., Wagner, W., A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25 (1996), 6, pp. 1509-1596
  13. Kong, H.-Y., He, J.-H., A Novel Friction Law, Thermal Science, 16 (2012), 5, pp. 1529-1533
  14. Shen, J., et al., On the Kubelka-Munk Absorption Coefficient, Dyes and Pigments, 127 (2016), Apr., pp. 187-188
  15. Soroush, R., Yekrangi, A., Modeling of the Casimir Force-Induced Adhesion in Freestanding Double-sided Nanostructures Made of Nanotubes, Nonlinear Sci. Lett. A, 8 (2017), 2, pp. 149-155

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence