THERMAL SCIENCE
International Scientific Journal
DIVERSITY SOLITON EXCITATIONS FOR THE (2+1)-DIMENSIONAL SCHWARZIAN KORTEWEG-DE VRIES EQUATION
ABSTRACT
With the aid of symbolic computation, we derive new types of variable separation solutions for the (2+1)-dimensional Schwarzian Korteweg-de Vries equation based on an improved mapping approach. Rich coherent structures like the soliton-type, rouge wave-type, and cross-like fractal type structures are presented, and moreover, the fusion interactions of localized structures are graphically investigated. Some of these solutions exhibit a rich dynamic, with a wide variety of qualitative behavior and structures that are exponentially localized.
KEYWORDS
PAPER SUBMITTED: 2017-05-20
PAPER REVISED: 2017-09-27
PAPER ACCEPTED: 2017-09-29
PUBLISHED ONLINE: 2018-09-10
THERMAL SCIENCE YEAR
2018, VOLUME
22, ISSUE
Issue 4, PAGES [1781 - 1786]
- Biswas, A., Solitary Waves for Power Law Regularized Long Wave Equation and R(m, n) Equation, Nonlinear Dyn., 59 (2009), 3, pp. 423-426
- Lu, X., Peng, M., Painleve-Integrablity and Explicit Solutions of the General Two-Coupled Nonlinear Schrodinger System in the Optical Fiber Communications, Nonlinear Dyn., 73 (2013), 1-2, pp. 405-410
- Wazwaz, A. M., Multiple Soliton Solutions for Three Systems of Broer-Kaup-Kupeshmidt Equations Describing Nonlinear and Dispersive Long Gravity Waves, Mod. Phys. Lett. B., 26 (2012), 20, pp. 125-126
- Chen, Y. X., Sech-Type and Gaussian-Type Light Bullet Solutions to the Generalized (3+1)Dimensional Cubic-Quintic Schrodinger Equation in PT-Symmetric Potentials, Nonlinear Dyn., 79 (2015), 1, pp. 427-436
- Lou, S. Y., Lu, J., Special Solutions from Variable Separation Approach: Davey Stewartson Equation, J. Phys. A: Math. Gen., 29 (1996), 14, pp. 4209-4215
- Zhu, H. P., Saptiotemporal Solitons on Cnoidal Wave Backgrounds in Three Media with Different Dis-tributed Transverse Diffraction and Dispersion, Nonlinear Dyn., 76 (2014), 3, pp. 1651-1659
- Huang, L., et al., New Variable Separation Solutions, Localized Structures and Fractals in the (3+1)-Dimensional Nonlinear Burgers System, Acta. Physica Sinica, 56 (2007), 2, pp. 611-619
- Zhong, W. P., et al., Special Soliton Structures in the(2+1)-Dimensional Nonlinear Schrodinger Equa-tion with Radially Variable Diffraction and Nonlinearity Coefficients, Phys. Rev. E, 83 (2011), 3, 036603
- Zheng, C. L., Localized Coherent Structures with Chaotic and Fractal Behaviors in a (2+1)-Dimensional Modified Dispersive Water-Wave System, Commun. Theor. Phys., 40 (2003), 1, pp. 25-32
- Dai, C. Q., et al., Spatial Solitons with the Odd and Even Symmetries in (2+1)-Dimensional Spatially in Homogeneous Cubic-Quintic Nonlinear Media with Transverse W-Shaped Modulation, J. Phys. B: At. Mol. Opt. Phys., 44 (2011), 14, 145401
- Zhu, H. P., Nonlinear Tunneling for Controllable Rogue Waves in Two Dimensional Graded Index Wave Guides, Nonlinear Dyn., 72 (2013), 4, pp. 873-882
- Kong, L. Q., Dai, C. Q., Some Discussions about Variable Separation of Nonlinear Models Using Ricaati Equation Expansion Method, Nonlinear Dyn., (2015), doi10.1007/s11071-015-2089-y
- Cheng-Lin, B., Stochastic Soliton-Like Solutions and Theirs Stochastic Excitations under a (2+1)-Dimensional Stochastic Dispersive Long Wave System, Appl. Math. Comput., 219 (2013), 14, pp. 7795-7804
- Zheng, C. L., et al., New Variable Separation Excitations of a (2+1)-Dimensional Broer-Kaup-Kupershmidt System Obtained by an Extended Mapping Approach, Z. Naturforsch A., 59 (2004), 12, pp. 912-918
- Kudriashov, K., Pickering, P., Rational Solutions for Schwarzian Integrable Hierarchies, J. Phys. A., 31 (1998), 47, pp. 9505-9518
- Toda, K., Yu, S. J., A Study of the Construction of Equations in (2+1) Dimensions, Inverse Problems, 17 (2001), 4, pp. 1053-1060
- Toda, K., Yu, S. J., The Investigation into the Schwarz-Korteweg-de Vries Equation and the Schwarz Derivative in (2+1) Dimensions, J. Math. Phys., 41 (2000), 7, pp. 4747-4751
- Ramirez, J., et al., The Schwarzian Korteweg-de Vries Equation in (2+1) dimensions, J. Phys. A: Math. Gen., 36 (2003), 5, pp. 1467-1484
- Ramirez, J., Romero, J. L., New Classes of Solutions for the Schwarzian Korteweg-de Vries Equation in (2+1) Dimensions, J. Phys. A: Math. Theor., 40 (2007), 16, pp. 4351-4365
- Luo, M., Li, L., Almost Periodic Solutions of a (2+1)-Dimensional Schwarzian Korteweg-de Vries Equation, Nonlinear Analysis., 69 (2008), 12, pp. 4452-4460
- Aslan, I., Analytic Investigation of the (2+1)-Dimensional Schwarzian Korteweg-de Vries Equation for Traveling Wave Solutions, Appl. Math. Comput., 217 (2011), 12, pp. 6013-6017
- Zheng, C. L., et al., Peakon, Compacton and Loop Excitations with Periodic behavior in KdV Type Models Related to Schrodinger System, Phys Lett. A., 340 (2005), 5-6, pp. 397-402
- Wen, X. Y., Xu, X. G., Multiple Soliton Solutions and Fusion Interaction Phenomena for the (2+1)-Dimensional Modified Dispersive Water-Wave System, Appl. Math. Comput., 219 (2013), 14, pp. 7730-7740