International Scientific Journal

External Links


After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds
PAPER REVISED: 2016-03-18
PAPER ACCEPTED: 2016-04-17
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2016, VOLUME 20, ISSUE Issue 6, PAGES [2137 - 2147]
  1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, C. J. Dawes: "Friction stir butt welding", GB patent no. 9125978 8, 1991;
  2. Nandan, R. et. al., Recent advances in friction-stir welding - Process, weldment structure and properties, Prog. in Materials Science, 53 (2008), 6, pp. 980-1023, doi:10.1016/j.pmatsci.2008.05.001
  3. Thomas, W., Nicholas, E., Friction stir welding for the transportation industries, Materials & Design, 18 (1997), 4-6, pp. 269-273, doi:10.1016/S0261-3069(97)00062-9
  4. Kalle, S., Application of friction stir welding in the shipbuilding industry, The Proceedings of Lightweight Construction - Latest Development, London, Great Britain, 2000
  5. Sorensen, C., Nelson, T., Friction Stir Welding of Ferrous and Nickel Alloys, ASM International, (2007), pp. 111-120
  6. Buhl, N., Wagner, G., Eifler, D., Gutensohn, M., Zillekens, F., Microstructural and Mechanical Investigations of Friction Stir Welded Ti/Ti- and Ti-Alloy/Ti-Alloy-Joints, in: Friction Stir Welding and Processing VII (Mishra, R., Mahoney, M., Sato, Y., Hovanski, Y., Verma, R.) John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2013, pp. 141-149
  7. Park, H. et. al., Microstructures and mechanical properties of friction stir welds of 60% Cu-40% Zn copper alloy, Materials Science and Engineering: A, 371 (2004), 1-2, pp. 160-169, doi:10.1016/j.msea.2003.11.030
  8. Bilici, M. et. al., The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets, Materials & Design, 32 (2011), 7 pp. 4074-4079, doi:10.1016/j.matdes.2011.03.014
  9. Lienert, W. et. al., Friction Stir Welding Studies on Mild Steel, Wel. Jou., (2003), Sup. 1, pp. 1S-9S,
  10. Benavides, S. et. al., Low-temperature friction-stir welding of 2024 aluminum, Scripta Materialia, 41 (1999), 8, pp. 809-815, doi:10.1016/S1359-6462(99)00226-2
  11. Liu, H. et. al., Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, Journal of Materials Processing Technology, 142 (2003), 3, pp. 692-696, doi:10.1016/S0924-0136(03)00806-9
  12. Mahoney, W. et. al., Properties of friction-stir-welded 7075 T651 aluminum, Metallurgical and Materials Transactions A, 29 (1999), 7, pp. 1955-1964
  13. Cavaliere, P. et. al., Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding, International Journal of Machine Tools and Manufacture, 46 (2006), 6, pp. 588-594, doi:10.1016/j.ijmachtools.2005.07.010
  14. Zettler, R., Lomolino, S., dos Santos, J., Donath, T., Beckmann, F., Lipman, T., Lohwasser, D., A study of material flow in FSW of AA2024-T351 and AA 6056-T4 alloys, Proceedings of the 5th International Conference on Friction Stir Welding, Metz, France, 2004
  15. Rai, R. et. al., Review: friction stir welding tools, Science and Technology of Welding and Joining, 16, (2011), 4, pp. 325-342, doi 10.1179/1362171811Y.0000000023
  16. Reza-E-Rabby, Md., Reynolds, A., Effect of Tool Pin Thread Forms on Friction Stir Weldability of Different Aluminum Alloys, Procedia Engineering, 90 (2011), pp. 637-642, doi:10.1016/j.proeng.2014.11.784
  17. El-Hafez, H., Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints, Journal of Materials Engineering and Performance, 20 (2010), 6, pp. 839-845
  18. Živković, A,. Influence of Friction Stir Welding Tool Geometry on Properties of Welded Joint of Alloys Al 2024 T351, Ph. D., University of Belgrade, Belgrade, Serbia, 2011
  19. Radisavljević, I. et. al., Influence of pin geometry on mechanical and structural properties of butt friction stir welded 2024-T351 aluminum alloy, Hemijska Industrija, 69 (2015), 3, pp. 323-330, doi: 10.2298/HEMIND131206020R
  20. Yan, J. et. al., Process-structure-property relationships for nugget and heat affected zone regions of AA2524-T351 friction stir welds, Science and Technology of Welding and Joining, 10 (2005), 6, pp. 725-736, doi 10.1179/174329305X68778
  21. Rajakumar, S., Balasbramanian, V., Correlation between weld nugget grain size, weld nugget hardness and tensile strength of friction stir welded commercial grade aluminium alloy joints, Materials & Design, 34 (2012), pp. 242-251, doi:10.1016/j.matdes.2011.07.054
  22. Chen, Z. et. al., Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O, Materials Science and Engineering: A, 474 (2008), 1-2, pp. 312-316, doi:10.1016/j.msea.2007.05.074
  23. Sato, Y., Kokawa, H., Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum, Metallurgical and Materials Transactions A, 32 (2001), 12, pp. 3023-3031, doi: 10.1007/s11661-001-0177-8
  24. Rajiv S. Mishra, Murray W. Mahoney, Yutaka Sato, Yuri Hovanski, Ravi Verma, Friction Stir Welding and Processing VII, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2013
  25. Mijajlović, M., Milčić, D., Analytical model for estimating the amount of heat generated during friction stir welding: application on plates made of aluminium alloy 2024 T351, in: Welding Processes (Kovačević, R.), InTech, Rijeka, Croatia, 2012, pp. 247-274
  26. Russell, M., Schercliff, H., Analytical modelling of friction stir welding, Proceedings of the 7th International Conference Joints in Aluminium, INALCO '98, Cambridge, England, 1998
  27. Schmidt, H. et. al., An analytical model for the heat generation in friction stir welding, Modelling and Simulation in Materials Science and Engineering, 12 (2004), pp. 143-157, doi: 10.1088/0965-0393/12/1/013
  28. Chao, Y. et. al., Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies, Journal of Manufacturing Science and Engineering, 125 (2003), pp. 138-145, doi: 10.1115/1.1537741
  29. Song, M., Kovačević, R., Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools & Manufacture, 43 (2003), pp. 605-615, doi:10.1016/S0890-6955(03)00022-1
  30. Arora, A. et. al., Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments, Scripta Materialia, 60 (2009), pp. 13-16, doi:10.1016/j.scriptamat.2008.08.015
  31. Khandkar, M et. al., Prediction of temperature distribution and thermal history during friction stir welding: input torque based model, Science and Technology of Welding and Joining, 8 (2003), 3, pp. 165-174, doi: 10.1179/136217103225010943
  32. Nandan, R. et. al., Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materialia, 55 (2006), pp. 883-895, doi:10.1016/j.actamat.2006.09.009
  33. Colegrove, P., Painter, M., Graham, D., Miller, T., Three Dimensional Flow and Thermal Modeling of the Friction Stir Welding Process, Proceedings of the 2nd International Symposium on FSW, Gothenburg, Sweden, 2000
  34. Veljić, D. et. al., Heat generation during plunge stage in friction stir welding, Thermal Science, 17 (2013), 2, pp. 489-496, doi: 10.2298/TSCI120301205V
  35. Heurtier, P. et. al., Mechanical and thermal modelling of Friction Stir Welding, Journal of Materials Processing Technology, 171 (2006), pp. 348-357, doi:10.1016/j.jmatprotec.2005.07.014
  36. Liechty, B., Webb, B., Modeling the frictional boundary condition in friction stir welding, International Journal of Machine Tools and Manufacture, 48 (2008), 12-13, pp. 1474-1485, doi: 10.1016/j.ijmachtools.2008.04.005
  37. Yau, Y. et. al., Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy, International Journal of Minerals, Metallurgy, and Materials, 20 (2013), 8, pp. 779-787, doi: 10.1007/s12613-013-0796-2
  38. Veljić, D. et. al., Experimental and numerical thermo - mechanical analysis of friction stir welding of high - strength alluminium alloy, Thermal Science, 18 (2014), Sup. 1, pp. s29-s38, doi: 10.2298/TSCI130512171V
  39. Olea, C,. Influence of Energy Input in Friction Stir Welding on Structure Evolution and Mechanical Behaviour of Precipitation-Hardening in Aluminium Alloys (AA2024-T351, AA6013-T6 and Al-Mg-Sc), Ph. D., University of Bochum, Bochum, Germany, 2008
  40. Wang, L. et. al., Measurement and simulation of temperature and residual stress distributions from friction stir welding AA2024 Al alloy, Materials at High Temperatures, 27 (2010), 3, pp. 167-178
  41. Mijajlović, M. et. al., Experimental Studies of Parameters Affecting the Heat Generation in Friction Stir Welding Process, Thermal Science, 16 (2012), Sup. 2, pp. S351-S362, doi: 10.2298/ TSCI120430174M
  42. ***, ISO 25239-5:2011 Friction stir welding -- Aluminium -- Part 5: Quality and inspection requirements
  43. Mijajlović, M,. Investigation and Development of Analytical Model for Estimation of Amount of Heat Generated During FSW, Ph. D., University of Niš, Niš, Serbia, 2012

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence