International Scientific Journal


A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.
PAPER REVISED: 2015-05-04
PAPER ACCEPTED: 2015-05-05
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE Issue 4, PAGES [1189 - 1193]
  1. Friedlander, S. K., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley Press, New York, USA, 2000
  2. Logan, B. E., Wilkinson, D. B., Fractal Dimensions and Porosities of Zoogloearamigera and Saccharomyces Cerevisae Aggregates, Biotechnol. Bioeng. 38 (1991), 4, pp. 389-396
  3. Kostoglou, M., et al., Bivariate Population Dynamics Simulation of Fractal Aerosol Aggregate Coagulation and Restructuring, J. Aerosol Sci. 37 (2006), 9, pp. 1102-1115
  4. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman & Co., New York, USA, 1977
  5. Wan, Z., et al., Method of Taylor Expansion Moment Incorporating Fractal Theories for Brownian Coagulation of Fine Particles, Int. J. Nonlin. Sci. Numer. Simul., 13 (2012), 7, pp. 459-467
  6. Clark, M. M., Flora, J. R. V., Floc Restructuring in Varied Turbulent Mixing, J. Colloid Interf. Sci. 147 (1991), 2, pp. 407-421
  7. Jiang, Q., Logan, B. E., Fractal Dimensions of Aggregates from Shear Devices, J. Am. Water Works Assoc. 88 (1996), 2, p. 100-113
  8. Spicer, P. T., Pratsinis, S. E., The Evolution of Floc Structure and Size Distribution during Shear- Induced Flocculation, Water Res. 30 (1996), 5, pp. 1046-1056
  9. Jiang, Q., Logan, B. E., Fractal Dimensions of Aggregates Determined from Steady-State Size Distributions, Environ. Sci. Technol., 25 (1991), 12, pp. 2031-2038
  10. Wan, Z., et al., Model of Fractal Aggregates Induced by Shear, Thermal Science, 17 (2013), 5, pp. 1403- 1408
  11. Cleasby, J. L., et al., Slow Sand and Direct In-Line Filtration of a Surface Water, J. Am. Water Works Assoc., 76 (1984), 12, pp. 44-55
  12. Clark, M. M., Critique of Camp and Stein's R.M.S. Velocity Gradient, J. Environ. Eng., 111 (1985), 6, pp. 741-754
  13. Glasgow, L. A., et al., Characterisation of Turbulence-Induced Aggregate Breakage, Proceedings, Enginering Foundation Conference (Eds.: B. M. Moudgil, P. Somasundaran), United Engineering Trusts, New York, USA, 1986, pp. 191-204
  14. Zhu, J., et al., Modeling of Sea Spray Droplets in the Ocean, Thermal Science, 18 (2014), 5, pp. 1577- 1582
  15. Logan, B. E., Environmental Transport Processes, Wiley Press, New York, USA, 1999
  16. Maricq, M. M., Chemical Characterization of Particulate Emissions from Diesel Engines: a Review, J. Aerosol Sci. 38 (2007), 11, pp. 1079-1118
  17. Wan, Z. et al., Modeling of Aggregation Kinetics by a New Moment Method, Appl. Math. Model,, (in press 2015)

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence