THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

A NEURO-FUZZY BASED COMBUSTION SENSOR FOR THE CONTROL OF OPTIMAL ENGINE COMBUSTION EFFICIENCY

ABSTRACT
Modern and advanced control systems for internal combustion engines require accurate feedback information from the combustion chamber. Whereas the in-cylinder pressure sensor provides this information through its close thermodynamic ties with the combustion process, drawbacks in its implementation push research towards other nonintrusive sensing methods. This paper suggests alternative methods of combustion phasing detection relying on measured angular crankshaft speed. Method developed, achieves sensing of angular position of the 50% of mass fraction burned (MFB50) through two steps: calculation of, so called, synthetic torque and its nonlinear transformation to a combustion feature estimator through local linear Neuro-fuzzy based model (LLNFM). In order to calibrate both parts of this virtual combustion sensor, parameters of a high-fidelity crankshaft dynamic model are identified, and LLNF model is trained with extensive experimentally collected data set. Created virtual MFB50 sensor, demonstrated its performance, on a large test data set comprised of 70% of gathered data.
KEYWORDS
PAPER SUBMITTED: 2012-07-03
PAPER REVISED: 2012-09-06
PAPER ACCEPTED: 2012-09-16
DOI REFERENCE: https://doi.org/10.2298/TSCI120703160M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2013, VOLUME 17, ISSUE Issue 1, PAGES [135 - 151]
REFERENCES
  1. CO2 Emissions from Fuel Combustion 2011 - Highlights, International Energy Agency
  2. Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 setting emission performance standards for new passenger cars as part of the Community's integrated approach to reduce CO2 emissions from light-duty vehicles (Text with EEA relevance), Europian Commision, 2009
  3. J. B. Heywood, Internal combustion engine fundamentals. McGraw-Hill, 1988
  4. C. D. Rakopoulos and E. G. Giakoumis, Second-law analyses applied to internal combustion engines operation, Progress in Energy and Combustion Science, 2006, vol. 32, no. 1, pp. 2-47
  5. K.-Y. Teh, S. L. Miller, and C. F. Edwards, Thermodynamic requirements for maximum internal combustion engine cycle efficiency. Part 1: optimal combustion strategy, International Journal of Engine Research, 2008, vol. 9, no. 6, pp. 449-465
  6. M. Bargende, Schwerpunkt-Kriterium und automatische Klingenerkennung Bausteine zur automatischen Kennfeldoptimierung bei Ottomotoren, MTZ, 1995, vol. 56, no. 10, pp. 632-638
  7. A. Beccari, S. Beccari, and E. Pipitone, An Analytical Approach for the Evaluation of the Optimal Combustion Phase in Spark Ignition Engines, J. Eng. Gas Turbines Power, 2010, vol. 132, no. 3
  8. E. Pipitone, A Comparison Between Combustion Phase Indicators for Optimal Spark Timing, Journal of Engineering for Gas Turbines and Power, 2008, vol. 130, no. 5
  9. G. M. Rassweiler and L. Withrow, Motion Pictures of Engine Flames Correlated with Pressure Cards, SAE International, Warrendale, PA, 380139, Jan. 1938.
  10. P. J. Shayler, M. W. Wiseman, and T. Ma, Improving the Determination of Mass Fraction Burnt, SAE International, Warrendale, PA, 900351, Feb. 1990.
  11. H. Maass, Kräfte, Momente und deren Ausgleich in der Verbrennungskraftmaschine, Springer, Wien, 1981.
  12. J. J. Moskwa, W. Wang, and D. J. Bucheger, A New Methodology for Use in Engine Diagnostics and Control, Utilizing ‘Synthetic' Engine Variables: Theoretical and Experimental Results, Journal of Dynamic Systems, Measurement, and Control, 2001, vol. 123, no. 3, p. 528
  13. S. Schagerberg and T. Mckelvey, Instantaneous Crankshaft Torque Measurements - Modeling and Validation, SAE International, Warrendale, PA, 2003-01-0713, Mar. 2003.
  14. F. Ponti, Development of a Torsional Behavior Powertrain Model for Multiple Misfire Detection, J. Eng. Gas Turbines Power, 2008, vol. 130, no. 2
  15. Z. Miljkovic and D. Aleksendric, Artificial neural networks - solved examples with short theoretical background (In Serbian), University of Belgrade - Faculty of Mechanical Engineer., Belgrade, 2009.
  16. S. S. Haykin, Neural networks: a comprehensive foundation, Macmillan, 1994.
  17. S. A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes: a review, Progress in Energy and Combustion Science, 2003, vol. 29, no. 6, pp. 515-566
  18. P. P. Van Der Smagt and B. J. A. Kröse, An introduction to Neural Networks, 8th ed. The University of Amsterdam, 1993.
  19. Y. He and C. J. Rutland, Application of artificial neural networks in engine modelling, International Journal of Engine Research, 2004, vol. 5, no. 4, pp. 281 -296
  20. O. Nelles, Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, 2001.
  21. N. Müller, M. Hafner, and R. Isermann, A Neuro-Fuzzy Based Method for the Design of Combustion Engine Dynamometer Experiments, SAE International, Warrendale, PA, 2000-01-1262, Mar. 2000.
  22. M. Tomić, S. Petrović, S. Popović, and N. Miljić, Dual Port Induction System for DMB 1.4MPI Engine, DEMI 2011 - Proceedings, Banja Luka, 2011.
  23. U. Kiencke and R. Eger, Messtechnik: Systemtheorie für Elektrotechniker. Springer, 2008.
  24. H. Fehrenbach, C. Hohmann, T. Schmidt, W. Schultalbers, and H. Rasche, Kompensation des Geberradfehlers im Fahrbetrieb, MTZ, 2002, vol. 63, no. 7/8, pp. 588-591
  25. M. F. J. Brunt and A. L. Emtage, Evaluation of Burn Rate Routines and Analysis Errors, SAE International, Warrendale, PA, 970037, Feb. 1997.
  26. G. K. Hohenberg, Basic findings obtained from measurement of the combustion process, Proceedings of the 19th International Fisita Congress, Melbourne, 1982.
  27. M. F. J. Brunt and C. R. Pond, Evaluation of Techniques for Absolute Cylinder Pressure Correction, SAE International, Warrendale, PA, 970036, Feb. 1997.
  28. M. Tazerout, O. L. Corre, and P. Stouffs, Compression Ratio and Tdc Calibrations Using Temperature- Entropy Diagram, SAE International, Warrendale, SAE International, Warrendale, PA, 1999-01-3509, Oct. 1999
  29. P. Tunestål, TDC Offset Estimation from Motored Cylinder Pressure Data based on Heat Release Shaping, Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles,2011, vol. 66, no. 4, pp. 705-716
  30. M. Tomić, S. Popović, N. Miljić, S. Petrović, M. Cvetić, D. Knezević, and Z. Jovanović, A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram, Thermal Science, 2008, vol. 12, no. 1, pp. 85-102
  31. M. Schmidt, F. Kimmich, H. Straky, and R. Isermann, Combustion Supervision by Evaluating the Crankshaft Speed and Acceleration, SAE International, Warrendale, PA, 2000-01-0558, Mar. 2000.
  32. F. Heister, Nonlinear feature selection using the general mutual information, PhD Thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, 2008.

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence