THERMAL SCIENCE

International Scientific Journal

LATTICE BOLTZMANN METHODS: APPLICATIONS IN COMPUTATIONAL FLUID MECHANICS

ABSTRACT
The development of novel numerical methods for applications in computational fluid dynamics has made rapid progress in recent years. These new techniques include the lattice gas and lattice Boltzmann methods. Compared to the traditional CFD methods the lattice Boltzmann methods are based on a more rigorous physical modelling, the Boltzmann equation. This allows to circumvent many deficiencies inherent in existing Navier-Stokes based approaches. Thus, the lattice Boltzmann methods have attracted a lot of attention in the fluid dynamics community and emerged as an attractive alternative in many application areas. In the present paper, we discuss some perspectives of the lattice Boltzmann methods, in particular for industrial applications and present some successful examples from projects related to aerodynamics, chemical and process engineering.
PAPER SUBMITTED: 2001-12-06
PAPER REVISED: 2002-02-26
PAPER ACCEPTED: 2002-03-18
PUBLISHED ONLINE: 2020-08-22
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2001, VOLUME 5, ISSUE Issue 1, PAGES [115 - 129]
REFERENCES
  1. Bernsdorf, J., Günewig, O., Hamm, W., and Münker, M. Strömungsberechnung in porösen Medien. GIT Labor-Fachzeitschrift (1999). 4:389.
  2. Chen, S., Dawson, S. P., Doolen, G. D., Janecky, D. R., and Lawiczak, A. Lattice methods and their applications to reacting systems. Comput. Chem. Eng. (1995). 19(6/7}:617-6A6.
  3. Chen, S. and Dooien, G. D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. (1998). 30:329-364.
  4. Chen, Y., Ohashi, H., and Akiyama, M. Heat transfer in lattice BGK model fluid. J. Star. Phys. (1995). 81(1/2):71-85.
  5. d'Humieres, D. Generalized lattice-Boltzimann equations. In Shizgal, B. D. and Weaver, D. P., editors, Rarefied Gas Dynamics: Theory and Simulation, Progrss in Astronautics and Aeronautics. AIIAA, Washington (1992) pages 450-498.
  6. EXA Corp. Powerflow news. EXAnews (1998). 4.0.
  7. Filippova, O. and Hiinel, D. Grid refinement for lattice-BGIX models. J. Comput. Phys.(1998). 147:219-228.
  8. Flekkoy, E. G., Rage, T., Oxaal, U., and Feder, J. Hydrodynamic irreversiblility in creeping flow. Phys. Rev. Lett. (1996). 77(20):4170-4178.
  9. Frisch, U., Hasslacher, B., and Pomeau, Y. Lattice-gas automata for the Navier-Stokes Equation. Phys. Rev. Lett. (1986). 56(14):1505-19508.
  10. He, X., Chen, S., and Doolen, G. D. A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. (1998). 146:282-300.
  11. He, X., Li, N., and Goldstein, B. Lattice Boltzmann simulation of diffusion-convection systems with surface chemical reaction. Molecular Simulation, Internet. Conference . 1999).
  12. He, X. and Luo, L.-S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E (1997). 56(6):6811- 6817,
  13. Hou, S., Sterling, J. D., Chen, 5., and Doolen, G. A lattice Boltzimaun subgrid: model for high Reynolds number flow. Fields Institute Communications (1996). 0:191—106.
  14. Lay Wim, J., Moin, P., and Moser, R. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. (1987). 177:133-166.
  15. Krafeyck, M. Gitter Boltzmann Methoden: Von der Theorie zur Anwendung. Technica report, Habilitation, Technische Uuiversitat, Munchen (2001).
  16. Ladd, A. and Verberg, R. Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. (submitted 2000).
  17. Lailemand, P. and Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. EB (2000). 61(6):6546 - 6562
  18. Li, Y-W., Zeiser, T., Lammers, P., Brenner, G., Klemm, E., Emig, G., and Durst, F. Direct simulation of the structure and consequential flow field in a packed bed. AIChE Journal (submitted, 2000).
  19. Masselot, A. and Chopard, B. A multiparticle lattice-gas model for hydrodynamics. int. J. Mod. Phys. C (1998). 9(8):1221-1230.
  20. Mazzocco, F., Arrighetti, C., Bella, G., Fillppova, O., and Succi, S. Multiscale lattice Boltzmann schemes: A preliminary application to axial turbomachine flow simulations. in Jenssen, C. B., Andersson, H. IL, Kvamsdal, T., Pettersen, B., Ecer, A., Veriaux, o., Satofuka, N., and Fox, P., editors, Parallel Computational Fluid Mechanics. Elsevier, Amsterdam (2000) .
  21. McNamara, G. R. and Zanetti, G. Use of the Boltzmann equation to simulate lattice gas automata. Phys. Rev. Lett. (1988). 61:2332-2330.
  22. Mei, R., Luo, L.-S., and Shyy, W. An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. (1999). 155:307-330.
  23. Oxaal, U., Fiekkoy, E. G., and Feder, J. Irreversible dispersion at a stagnation point: Experiments and lattice Boltzmann simulations. Phys. Rev. Lett. (1994). 72(22):3514-3517.
  24. Pervaiz, M. M. and Teixcira, C. M. Two equation turbulence modelling with the lattice Boltzmann method. 2nd International Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, ASME PVP Division Conference, August 1-5 1999, Bosten, MA (1999). Preprint.
  25. Qian, Y. H., d'Humiéres, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. (1992}. 17(6):479-484.
  26. Rottensteiner, M., Hupertz, B., Fogt, H., and Luhrmann, L. Comparison of different cfd tools based on a standardized post-processing. In European Automotive Congress, Bratislava (2001) .
  27. Stockman, H. W., Fredrich, J. T., O'Connor, R. M., Noble, D., Glass, R. J.. and Brown, 5. R. 3D and 2D lattice Boltzmann calculations of dispersion and reaction. wwww.
  28. Succi, S., Amati, G., and Benzi, R. Challenges in lattice Boltzmann computing. J. Stat. Phys. (1995). 81:5-16.
  29. Teixeira, C. M. Incorporating turbulence models into the lattice-Boltzmann method. Int. J. Mod. Phys. C (1998). 9(8):1159-1175.
  30. Tolke, J., Krafezyk, M., Schulz, M., Rank, E., and Berrios, R. Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK models. int. J. Mod. Phys. C (1998). 9(8):1143-1158.
  31. Weimar, J. R. Cellular Automata for Reactive Systems. Ph.D. thesis, Universite Libre de Bruxelles, Faculté des Sciences, Service de Chimie Physique (1995).
  32. Wolf-Gladrow, D. A. Lattice-Gas Cellular Automata and Laitice Boltzmann Modeis, volume 1725 of Lecture Notes in Mathematics. Springer, Berlin (2000).
  33. Zeiser, T., Lammers, P., Klemm, E., Li, Y., Bernsdorf, J.. and Brenner, G. CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method. Chem. Engng. Sci. (2001). 56(4):1697-1704.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence