THERMAL SCIENCE

International Scientific Journal

EXPERIMENTS IN TURBULENT FLAMES: FROM INDUSTRIAL TO LABORATORY SCALE

ABSTRACT
This paper reviews measurements obtained in turbulent flames and the consequent understanding on the fundamental processes of the flow, mixing and combustion in turbulent reacting flows. The flames considered range from large industrial flames in production glass furnaces and boilers to model-scale experiments, which are the result of a combined research effort in order to accomplish with the need of cleaner combustion strategies for the sustainable development.
PAPER SUBMITTED: 1997-06-10
PAPER REVISED: 1998-05-21
PAPER ACCEPTED: 1998-07-18
PUBLISHED ONLINE: 2020-11-07
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 1997, VOLUME 1, ISSUE Issue 2, PAGES [3 - 26]
REFERENCES
  1. Abraham, K. U., Rajan, S., Measurements of Furnace Heat Transfer on a Corner-Fired, Pulverized Coal Boiler, Journal of the Institute of Energy, (1983), pp. 217-224
  2. Almeida, P., Ferrao, P., Heitor, M. V., The effect of Swirl on the Interaction Between Pressure Gradients and Density Fluctuations in Bafle-Stabilised Premixed Flames, Proceedings, 10th Symp. on Turbulent Shear Flows, 1995
  3. Barklage-Hilgefort, H., Glastech. Ber. 62 (1989), 113.
  4. Bellan, J., Elgobashi, S., Fuel-Composition Effects on High-Temperature Corrosion in Jndustrial/Commercial Boilers and Furnaces: A. Review, J. of Eng. for Gas Turbines and Power, 107 (1985), pp. 744-757.
  5. Bonin, M. P., Queiroz, M., Local Particle Velocity, Size and Concentration Measurements in an Industrial Scale Pulverized Coal Fired Boiler, Comb. and Flame, (1997), to appear.
  6. Boyd, R. K., Kent, J. H., The-Dimensional Furnace Computer Modeling, Proceedings, 21st. Symp. (intl.) on Combustion Institute, 1986
  7. Bray, K. N.C, Libby, P. A., Moss, J. H., Unified Modeling Approach for Premixed Turbulent Combustionâ€" Part I: General Formulation, Comb. Flame, 61 (1985), pp. 87-102
  8. Bruce, W. B, Cox, N. M., Joyce, W. I., Oil Droplet Production and Size Measurement from a Twin Fluid Atomizer Using Real Fluids, Proceedings, 1st Int Conf on Liquid Atomization and Spray Systems, Tokyo 1988, pp. 259-263
  9. Buttler, B. W., Webb, B. W., Local Temperatures and Wall Radiant Heat Flux Measurements in An Industrial Scale Coal Fired Boiler, Fuel, 70 (1991), pp. 1457-1464.
  10. Carvalho, M. C., Coelho, P.,Numerical Predictions of an Oil-Fired Water Tube Boiler. Int. J. Engn. Computations, 7 (1990), 3, pp. 217~234
  11. Cassiano, J., Heitor, M. V., Silva, T. F., Combustion Tests on an Industrial Glass-Melting Furnace. Fuel, 73 (1994-a), 10, pp. 1638-1642
  12. Cassiano, J., Heitor, M. V., Moreira, A. A. L. N., Silva, T. F., Temperature, Species and Heat Transfer Characteristics of a 250 MWe Utility Boiler, Comb. Sci. and Tech., 98 (1994-b), pp. 199-215
  13. Chedaille, J., Braud, Y., Industrial Flames: Vol. 1, Measurements in Flames, International Flame Research Foundation (Eds. J. M. Beer, M. W. Thring ), Edward Arnold Publ., 1972
  14. Correia, D., Ferrao, P. M. C., Heitor, M. V., Silva, T. F., Low-Emissions Glass Furnace Technology Based on Advanced Control and Monitoring, Glasstechnische Berichte, Glass Sci. and Tech., accepted for publication, 1996
  15. Culick, F., Heitor, M. V., Whitelaw, J. H.,Unsteady Combustion, Kluwer Academic Publishers, 1996
  16. Duarte, D., Ferrao, P., Heitor, M. V., Flame Structure Characterization based on Rayleigh Thermometry and Two-point Laser Doppler Measurements, in Developments in Laser techniques and Application to Fluid Mechanics (Eds. R. J. Adrian et al.) Springer Verlag, 1995
  17. Duarte, D., Ferrao, P. M. C., Heitor, M. V., Flame Structure Characteristic Based on Rayleigh Thermometry and Two-Point Laser-Doppler Measurements, in Developments in Laser Techniques and Applications to Fluid Mechanics, (Ed. R. J. Adrian et al.) Springer Verlag, 1996, pp. 185-200
  18. Durao, D. F. G., Heitor, M. V., Moreira, A. L. N., Flow Measurements in a Liquid Fuelled Burner, in Applications of Laser Techniques to Fluid Mechanics (Ed. R. J. Adrian et. al.), Springer-Verlag, 1991, pp. 163-182
  19. Durao, D. F. G., Heitor, M. V., Moreira, A. L. N., Turbulent Transport Processes in Swirling Recalculating Non-Premixed Flames, Proceedings, 8th Symp. on Turbulent Shear Flows, Munich, Sept. 9-11, 1991
  20. Durao, D. F. G., Heitor, M. V., Whitelaw, J. N., Witze, P. O., Combustion Flow Diagnostics, Kluwer Academic Publishers, 1992
  21. Durao, D. F. G., Fernandes, E. C., Heitor, M. V., Moreira, A.L.N., LDA-Measurements of Velocity and Turbulent Transport Processes in a 150 kW Baffle-Stabilized Flame in Applications of Laser Techniques to Fluid Mechanics Vol. 6 (Ed. by R. J. Adrian et al.) Springer-Verlag. 1993, pp. 470-489
  22. Facchiano, A., Aplications of Computational Fluid Dynamics Modeling in the Design of Industrial Combustion Systems, in Combustion Modeling and Burner Replacement Strategies, ASME. Fact., 10 (1990), pp. 9-14
  23. Farmer, D., Heitor, M. V., Sentieiro, J., Vasconcelos, A. T., Glass Ind. 10.10.
  24. Fernandes, E. C., Ferrao, P. M. C., Heitor, M. V., Moreira. A. L. N., Velocity-Temperature Correlations in Recirculating Flames with and Without Swirl, Thermal Fluid Sci. (1994), 9, pp. 241-299
  25. Ferrao, P., Heitor, M. V., Probe and Optical Techniques for Simultaneous Scalar-Velocity Measurements, Combusting Flow Diagnostics (Eds. D. F. G. Durao et al.), Kluwer Academic Publ. NATO/Asi series, (1992), pp. 169-232
  26. Ferrao, P., Heitor, M. V., Turbulent Mixing and Non-Gradient Diffusion in Baffle-Stabilized Flames, in Turbulent Shear Flows â€" 9, Springer Verlag, 1995
  27. Ferrao, P., Heitor, M. V., Turbulent Mixing and Non-Gradient Diffusion in Baffle-Stabilized Flames, in Turbulent Shear Flows â€" 9, (Eds. Durst et al.), Springer Verlag, 1995
  28. Ferrao, P., Heitor, M. V., Measurements of Velocity and Scalar Characteristics in Premixed Recirculating Flames â€" Part 1: Probe and Optical Diagnostics, Submitted for Publication in Experiments in Fluids (1996 a)
  29. Ferrao, P., Heitor, M. V., Measurements of Velocity and Scalar Characteristics in Premixed Recirculating Flames â€" Part 2: Simultaneous Measurements, Submitted for Publication in Experiments in Fluids (1996 b)
  30. Flame, M., Heap, J., Kremer, H., NO, Reduction Potential for Glass melting Furnaces, Proceedings, 3rd European Conference on Industrial Flames and Boilers, Lisbon, July 3-6, 1995
  31. Hardalupas, Y., Liu, C. H., Whitelaw, J. H., Experiments With Disc-Stabilized Kerosene-Fuelled Flames, Combust. Sci and Tech, 97 (1994), pp. 157-175
  32. Hardalupas, Y., Taylor, A. M. K. P., Whitelaw, J. H., Velocity and Size Characteristics of Swirling Liquid-Fuelled Flames, Proceedings R. Soc. London, A48. (1990), pp. 129-145
  33. Heitor, M. V, Taylor, A. M. K. P., Whitelaw, J. H., The Interaction of Turbulence and Pressure Gradients-Stabilized Premixed Flames. J. Fluid Mechanics, 181 (1987), pp. 387-413
  34. Heitor, M. V., Advanced Sensor Systems for the Application of CIM Technologies in the Process Industry: A Review, Presented at CIM/Europe Workshop on CIM in the Process Industry. Athens, March 14-15 1991. Published in Industrial metrology, 2 (1991), 1, pp. 1-31.
  35. Heitor, M. V., Moreira A. L. N., Velocity Characteristics of a Swirling Recirculating Flow. Exp. Thermal and Fluid Science, 5 (1992), 3, pp. 369-380
  36. Heitor, M. V., Moreira A. L. N., Probe Measurements for Scalar Properties in Reacting Flows, in Combusting Flow Diagnostics (Eds. D. F.G. Duraoetal.), Kluwer Academic Publishers, 1992, pp. 79-136.
  37. Heitor, M. V., Moreira A. L. N., Thermocouple and Sample Probes for Combustion Studies, Prog. Energy and Combustion Sci.,19 (1993), pp. 259-278.
  38. Heitor, M. V., Moreira, A. L. N., Silva, A. M. C., Silva, T. F., Experimental Analysis of the Influence of Burner Design on the Performance of Utility Oil-Fired Boiler. J. Institute Energy, June (1994), pp. 50-60
  39. Heitor, M.V ., Starner, S., Taylor, A. M. K. P., Whitelaw, J. H., Velocity. Size and Heat Flux Measurements by Laser-Doppler Velocimetry, in Experimental Methods for Flows with Combustion, (Ed. A.M.K.P. Taylor), Academic Press (1991)
  40. Hottel, H. C., Sarofim, A. F., Radiative Transfer, MacGraw-Hill, New York, 1976
  41. Lawn, C. J., Principles of Combustion Engineering for Boilers, Academic Press, 1987
  42. Libby, P., Bray, K. N. C., Counter Gradient Diffusion in Premixed Turbulent Flames, AIAA J, 19 (1981), 205-213
  43. Lie. C. H., Nouri, J. M., Whitelaw, J. H., Tse, D. G. N., Particle Velocities in a Swirling, Confined Flow. Combust. Sci. and Tech., 68 (1989), pp. 131-145
  44. Lockwood, F.C., Papadopoulos, C. Abbas, A. S., Prediction of a Corner-Fired Power Station Combustor, Combust. Sci. and Tech., (1988), pp. 5-23
  45. Mansour, N. S., Bilger, R. W., Dibble,W., Turbulent Partially Premixed of Nitrogen Diluted Methane Near Extinction. Comb. and Flame, 85 (1991), pp. 215-231
  46. Mao, C. P., Wang, G., Chigier, N. A., An Experimental Study of Air-Blast Atomizer Spray Flames. Twenty First Symp. (Intl.) on Combustion, The Combustion Institute (1986), pp. 665-673
  47. McDonncl, V. G., Samucisen, G. S., Evolution of the Two-Phasc Flow in the Near Field of an Air-Blast Atomizer Under Reacting and Non-Reacting Conditions, Proceedings, 4th Int. Symp. on Appl. of Laser Anemometry to Fluid Mechanics, paper 15.1, Lisabon, 1988
  48. Milosavljević, V., Taylor, A. M. K. P., Whitelaw. J. H., The Influence of Burner Geometry and Flow Rates : on the Stability and Symmetry of Swirl-Stabilized Non-Premixed Flames. Comb. and Flame, 80 (1989), pp. 196-208
  49. Neri, A., Scali, C., Vatistas, N., Optimization of Soot Blowing Operations in Power Plants, Proceedings, of the 2nd INFUD, Vilamoura, Portugal, 1991
  50. Richter, W., Fleischhans, G., Murtu, C. V. S., Prediction of Radiative Heat Trasnfer in a Heavy Fuel Oil Flame, 1979
  51. Robinson, G.F., A Three Dimensional Analytical Model of a Large Tangentially-Fired Furnace, Journal of the Institute of Fuel, Sept. 1985, pp. 116-150
  52. Sargeant, H., Blast Atomizer Developments in the Central Electricity Generating Board, Proceedings, 2nd Intl. Conf. on Liquid Atomization and Spray Systems, Madison. Wisconsin. USA, 1982, pp. 131-135
  53. Schmalhorst, E., Ernas, T., First Practical Expericnce With an SCR De NO, Facility in a Container Glass Works. Glastech. Ber. Glass Sci. Technol., 68 (1995), 5, pp. 133-138
  54. Sequeira, C. A. C., Mechanistic of Fireside Corrosion in Boilers, Proceedings of the IST, INFUB, Lisbon, Portugal, 1989
  55. Takagi, T., Okamoto, T., Taji, M., Nakasuji, Y., Retardation of Mixing and Counter-Gradient Diffusion in a Swirling Flame, Twentieth Symposium (International) on Combustion (1984), pp. 251-258, The Combustion Institute
  56. Taylor, A. M. K. P., Instrumentation for Flames With Combustion. Academic Press, 1993
  57. Victor, J., Costeira, J. P., Tome, J., Sentieiro, J.. A Computer Vision System for the Characterization and Classification on Physical Phenomena Inside Glass Furnaces, Proceedings, IEEE Industry Applications Soc. Annual Meeting, Dearborn, Michigan, 1991.
  58. Viskanta, R., Menguc, M. P., Radiation Heat Transfer in Combustion Systems, Prog. Energy Combust. Sci., Vol. 13, (1987), pp. 97-160
  59. Wall, T. F., Stewart, I., McC. Tests on the Spectral Radiation from a Large Pulverized-Coal Flame, J. Inst. Fuel. May 1971 (1975), pp. 235-240

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence