THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

TGA-DSC-MS analysis of pyrolysis process of various agricultural residues

ABSTRACT
Slow pyrolysis (gradual heating over a wide range of temperatures) characteristics of various biomasses (corn brakes (CB), wheat straw (WS) and hazelnut shell (HS)) were investigated by simultaneous thermal analysis (STA-TGA-DTG-DSC), coupled with mass spectrometry (MS). Thermal decomposition of these samples was divided into three stages corresponding to removal of water, devolatilization, and formation of bio-char. It was found that differences in thermal behavior of the samples are due to differences in their composition. MS results showed that H2, CH4, H2O, CO2 (C3H8), CO, and C2H6 were main gaseous products released during pyrolysis. Within the pyrolysis processes, it was found that CO2 can be used on the large scale for production of CO-rich syngas. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172015 and Grant no. III42010]
KEYWORDS
PAPER SUBMITTED: 2018-01-18
PAPER REVISED: 2018-02-16
PAPER ACCEPTED: 2018-06-19
PUBLISHED ONLINE: 2018-09-29
DOI REFERENCE: https://doi.org/10.2298/TSCI180118182M
REFERENCES
  1. Ohlström M, Mäkinen T, Laurikko J, Pipatti R (2001) New concepts for biofuels in transportation: biomass-based methanol production and reduced emissions in advanced vehicles. Espoo, VTT (Technical Research Centre of Finland) Energy. VTT Research Note, 3-94.
  2. Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews 13 (1):167-178. doi:10.1016/j.rser.2007.07.011
  3. Maniatis K (2001) Progress in Biomass Gasification: An Overview. Progress in Thermochemical Biomass Conversion. Blackwell Science Ltd. doi:10.1002/9780470694954.ch1
  4. Faaij A (2006) Modern Biomass Conversion Technologies. Mitigation and Adaptation Strategies for Global Change 11 (2):343-375. doi:10.1007/s11027-005-9004-7
  5. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences 7 (2):163-173. doi:10.1016/j.jrras.2014.02.003
  6. Garcia-Perez M, Lewis T, Kruger C (2010) Methods for producing biochar and advanced biofuels in Washington State, Part 1: Literature Review of pyrolysis Reactors. First Project Report. Department of Biological Systems Engineering and the Center for Sustaining Agriculture and Natural Resources. Washington State University, Pullman, WA:137
  7. Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds AJ, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress 3:171-197. doi:10.1016/j.tsep.2017.06.003
  8. Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energ Convers Manage 89:83-91. doi:10.1016/j.enconman.2014.09.058
  9. Alipour Moghadam R, Yusup S, Azlina W, Nehzati S, Tavasoli A (2014) Investigation on syngas production via biomass conversion through the integration of pyrolysis and air-steam gasification processes. Energ Convers Manage 87:670-675. doi:10.1016/j.enconman.2014.07.065
  10. Chaudhari ST, Dalai AK, Bakhshi NN (2003) Production of Hydrogen and/or Syngas (H2+ CO) via Steam Gasification of Biomass-Derived Chars. Energy & Fuels 17 (4):1062-1067. doi:10.1021/ef030017d
  11. Boll W, Hochgesand G, Higman C, Supp E, Kalteier P, Müller W-D, Kriebel M, Schlichting H, Tanz H (2011) Gas Production, 3. Gas Treating. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.o12_o02
  12. EN ISO 14780:2017. "Solid biofuels - Sample preparation", European Committee for Standardization (CEN), 2017, Brussels, Belgium.
  13. EN ISO 18134:2015. "Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference method", European Committee for Standardization (CEN), 2015, Brussels, Belgium.
  14. EN ISO 16948:2015. "Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen", European Committee for Standardization (CEN), 2015, Brussels, Belgium.
  15. EN ISO 17225-1:2014. "Solid biofuels - Fuel specifications and classes - Part 1: General requirements", European Committee for Standardization (CEN), 2015, Brussels, Belgium.
  16. EN ISO 18125:2017. "Solid biofuels - Determination of calorific value", European Committee for Standardization (CEN), 2015, Brussels, Belgium.
  17. Demirbas A (2009) Hydrogen from Mosses and Algae via Pyrolysis and Steam Gasification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (2):172-179. doi:10.1080/15567030802464388
  18. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels 20 (3):848-889. doi:10.1021/ef0502397
  19. James A, Thring R, Helle S, Ghuman H (2012) Ash Management Review—Applications of Biomass Bottom Ash. Energies 5 (12):3856-3873. doi:10.3390/en5103856
  20. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83 (1):37-46. doi:10.1016/s0960-8524(01)00118-3
  21. Novak JM, Cantrell KB, Watts DW (2013) Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis. BioEnergy Research 6 (1):114-130. doi.org/10.1007/s12155-012-9228-9
  22. Conesa JA, Caballero J, Marcilla A, Font R (1995) Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta 254:175-192. doi:10.1016/0040-6031(94)02102
  23. Caballero JA, Conesa JA, Font R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis 42 (2):159-175. doi:10.1016/s0165-2370(97)00015-6
  24. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12-13):1781-1788. doi:10.1016/j.fuel.2006.12.013
  25. Wu S, Shen D, Hu J, Zhang H, Xiao R (2014) Intensive interaction region during co-pyrolysis of lignin and cellulose: Experimental observation and kinetic assessment. BioResources 9 (2) 2259-2273. doi:10.15376/biores.9.2.2259-2273
  26. Sonobe T, Pipatmanomai S, Worasuwannarak N (2006) Pyrolysis characteristics of Thai-agricultural residues of rice straw, rice husk, and corncob by TG-MS technique and kinetic analysis. Proceedings of the 2nd Joint International Conference on "Sustainable Energy and Environment (SEE'06), 21-23 November 2006, Bangkok, Thailand,C-044. 1-6.
  27. Breunig M, Gebhart P, Hornung U, Kruse A, Dinjus E (2018) Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass and Bioenergy 111:352-360. doi.org/10.1016/j.biombioe.2017.06.001
  28. Park J, Riaz A, Insyani R, Kim J (2018) Understanding the relationship between the structure and depolymerization behavior of lignin. Fuel 217:202-210. doi.org/10.1016/j.fuel.2017.12.079
  29. Gómez CJ, Mészáros E, Jakab E, Velo E, Puigjaner L (2007) Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques. Journal of Analytical and Applied Pyrolysis 80 (2):416-426. doi:10.1016/j.jaap.2007.05.003
  30. Özveren U, Özdoğan ZS (2013) Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry. Biomass and Bioenergy 58:168-179. doi:10.1016/j.biombioe.2013.08.011
  31. Jakab E, Faix O, Till F (1997) Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. Journal of Analytical and Applied Pyrolysis 40-41:171-186. doi:10.1016/s0165-2370(97)00046-6
  32. Wang T, Yin J, Liu Y, Lu Q, Zheng Z (2014) Effects of chemical inhomogeneity on pyrolysis behaviors of corn stalk fractions. Fuel 129:111-115. doi:10.1016/j.fuel.2014.03.061
  33. Ferdous D, Dalai A, Bej S, Thring R, Bakhshi N (2001) Production of H 2 and medium Btu gas via pyrolysis of lignins in a fixed-bed reactor. Fuel Processing Technology 70 (1):9-26. doi:10.1016/s0378-3820(00)00147-8.
  34. Widyawati M, Church TL, Florin NH, Harris AT (2011) Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy 36 (8):4800-4813. doi:10.1016/j.ijhydene.2010.11.103