International Scientific Journal

Thermal Science - Online First

online first only

Kinetic study of the pyrolysis and gasification of rosa multiflora and miscanthus giganteus biomasses via thermogravimetric analysis

the thermal behaviour of the rosa mutiflora (3groups: control; irradiated 3times/3sec and 3times/9sec by low power laser of wavelength 672 nm) and miscanthus giganteus (3 groups: r, v and z) biomass by thermogravimetric analysis was studied at heating rate 3 k/min-1 from ambient temperature to 950°C. tga tests were performed in high purity carbon dioxide (99.998%) with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 μm. in contrast to the majority of the conducted examinations, which are carried out with the use of chars, the measurements were conducted for raw biomass. the kinetics parameters of the biomass conversion process were determined from the experimental data by integral methods (murray and white; senum and yang). the methods used have allowed distinguishing and analyzing the different stages of the process, i.e. the primary and secondary pyrolysis as well as gasification. both methods gave comparable results. the activation energy determined using more accurate senum and yang method ranged from 85 to 88 kj/mol (primary pyrolysis), from 29 to 32 kj/mol (secondary pyrolysis) and from 173 to 190 kj/mol (gasification) for rosa multiflora biomass and from 86 to 111 kj/mol (primary pyrolysis), from 22 to 25 kj/mol (secondary pyrolysis) and from 181 to 217 kj/mol (gasification) for miscanthus giganteus the pre-exponential factor was in the range of 5.95×106 to 13.05×106 min-1 (primary pyrolysis), 2.25 to 4.22 min-1 (secondary pyrolysis) and 13.96×106 to 1.18×108 min-1 (gasification) for rose multiflora biomass and 6.94×106 to 1.79×109 min-1 (primary pyrolysis), 0.88 to 1.62 min-1 (secondary pyrolysis) and 131.54×106 to 1.92×109 min-1 (gasification) for miscanthus giganteus biomass.
PAPER REVISED: 2017-05-16
PAPER ACCEPTED: 2017-05-22
  1. Demirbas, A., Biofuels: Securing the Planet's Future Energy Needs, Springer-Verlag London., London, UK, 2009.
  2. Nelson, V.C., Starcher, K.L., Introduction to Bioenergy, CRC Press Taylor & Francis Group., Florida, USA, 2016.
  3. Tursunov, O., Isa, K., Ong, S., Review paper of catalyst (dolomite) analysis for MSW pyrolysis (gasification), Proceedings, International Postgraduate Conference on Engineering (IPCE)., Perlis, Malaysia, 2011.
  4. Tursunov, O., A comparison of catalysts zeolite and calcined dolomite for gas production from pyrlolysis of municipal solid waste (MSW), J. Ecological Engineering., 69 (2014), pp. 237-243.
  5. Tursunov, O., Dobrowolski, J., Nowak, W., Catalytic energy production from municipal solid waste biomass: Case study in Perlis, Malaysia, World J. Environmental Engineering., 3 (2015) pp. 7-14.
  6. Sharma, A., Pareek, V., Zhang, D., Biomass pyrolysis —A review of modeling, process parameters and catalytic studies, J. Renewable and Sustainable Energy Reviews., 50 (2015), pp. 1081-1096.
  7. Tursunov, O., Dobrowolski, J., Klima, K., Kordon, B., Ryczkowski, J., Tylko, G, Czerski, G., The Influence of Laser Biotechnology on Energetic Value and Chemical Parameters of Rose Multiflora Biomass and Role of Catalysts for bio-energy production from biomass: Case Study in Krakow-Poland, World J. Environmental Engineering., 3 (2015), pp. 58-66.
  8. Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading, J. Biomass and Bioenergy., 38 (2012), pp. 68-94.
  9. Seo, D. K., Park, S. Sh., Hwanga, J., Yu, T., Study of the pyrolysis of biomass using thermogravimetric analysis (TGA) and concentration measurements of the evolved species, J. Analytical and Applied Pyrolysis., 89 (2010), pp. 66-73.
  10. Shafizadeh, F., McGinnis, G.D., Chemical composition and thermal analysis of cottonwood, J. Carbohydrate Research., 16 (1971), pp. 273-277.
  11. Antal, M. J., Biomass pyrolysis: a review of the literature. Part I-Carbohydrate pyrolysis, In, Boer K.W. and Duffie I.A. (Eds.) J. Advances in Solar Energy., 11 (1983), pp. 61-111.
  12. Kokot, S., Yang, P., Comparison of thermogravimetric and differential scanning calorimetric results for cellulosic fabrics by chemometrics, J. Anal. Chim. Acta., 304 (1995), pp. 297-305.
  13. Skodras, G., Grammelis, O.P., Balinas, P., Karakas, E., Sakellaropoulos, G., Pyrolysis and combustion characteristics of biomass and waste-derived feedstock, J. Ind. Eng. Chem. Res., 45 (2006), pp. 3791-3799.
  14. Jeguirim, M., Trouve, G., Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis, J. Bioresource Technology., 100 (2009), pp. 4026-4031.
  15. Cortes, A.M., Bridgwater, A.V., Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis, J. Fuel Processing Technology., 138 (2015), pp. 184-193.
  16. White, J.E., Catallo, W.J., Legendre, B.L., Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies, J. Anal. Appl. Pyrolysis., 91 (2011), pp. 1-33.
  17. Yang, Q., Wu, S., Thermogravimetric characteristics of wheat straw lignin, J. Cellul. Chem. Technol., 43 (2009), pp. 133-139.
  18. Di Blasi, C., Combustion and gasification rates of lignocellulosic chars, J. Prog. Energy Combust. Sci., 35 (2009), pp. 121-140.
  19. Carrasco, F., The evaluation of kinetic parameters from thermogravimetric data: comparison between established methods and the general analytical equation, J. Thermochim. Acta., 213 (1993), pp. 115-134.
  20. Saddawi, A., Jones, J.M., Williams, A., Wójtowicz, M.A., Kinetics of the thermal decomposition of biomass, J. Energy Fuel., 24 (2009), pp. 1274-1282.
  21. Park, J.W., Oh, S.Ch., Lee, H.P., Kim, H.T., Yoo, K.O., Kinetic Analysis of Thermal Decomposition of Polymer Using a Dynamic Model, Korean J. Chem. Eng., 17 (2000), pp. 489-496.
  22. Perez-Maqueda, L., Criado, J., The Accuracy of Senum and Yang's approximations to the Arrhenius integral, J. Therm. Anal. Calorim., 60 (2000), pp. 909-915.
  23. Murray, R., White, J., Kinetics of the Themal Decomposition of Clay. 2. Isothermal Decomposition of Clay Minerals, Trans. Brit. Ceram. Soc., 54 (1955), pp. 151.
  24. Dobrowolski, J.W., Budak, A., Trojanowska, D., Rymarczyk, M., Macuda, J., Laser stimulation of Trichophyton mentagrophytes for the enhancement biodegradation of hydrocarbons, J. Environmental Engineering and Management., 11 (2012), pp. 1783-1788.
  25. Dobrowolski, J.W., Rozanowski, B., Zielinska-Loek, A., Sliwka, M., Gowin, K., Mazur, R., Perspectives of application of laser biostimulation for more bioremediation of soil and waste water, Proceedings, International Conference on Bioremediation of Soil and Groundwater., Politechnika Slaska, Krakow, 2004, pp. 133-148.
  26. Tursunov, O., Dobrowolski, J., Addressing environmental issues and risks in Uzbekistan, Integrated J. of Engineering Research and Technology., 2 (2015), pp. 62-69.
  27. Dobrowolski, J.W., Zielinska-Loek, A., The laser photostimulation of willow cuttings planted alongside main roads and change of concentration of elements in the willow's organs, Proceedings, Mengen und Spurenelemente., Friedrich-Schiller-Universitat, Leipzig, 2002, Vol. 21, pp. 334-340.
  28. Dobrowolski, J.W., Sliwka, M., Mazur, R., Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas, J. Chem. Technol. Biotechnol., 87 (2012), pp. 1354-1359.
  29. Senum, G.I., Yang, R.T. J., Thermal Anal., 16 (1977), pp. 1033.
  30. Weber, R., Extracting mathematically exact kinetic parameters from experimental data on combustion and pyrolysis of solid fuels, J. Energy Institute., 81 (2008), pp. 226-233.
  31. Patra, T.K., Sheth, P.N., Biomass gasification models for downdraft gasifier: A state -of - the art review, J. Renewable and Sustainable Energy Reviews., 50 (2015), pp. 583-593.
  32. Mikulandrić, R, Loncar, D., Bohning, D., Bohme, R., Beckmann, M., Process performance improvement in a co-current, fixed bed biomass gasification facility by control system modifications, J. Energy Conversion and Management., 104 (2015), pp. 135-146.
  33. Hamad, A.M., Radwan, A.M., Heggo, D.A.,Moustafa, T., Hydrogen rich gas production from catalytic gasification of biomass, J. Renewable Energy., 85 (2016), pp.1290-1300.
  34. Balu, E., Lee U. Chung J.N., High temperature steam gasification of woody biomass - A combined experimental and mathematical modeling approach, Intl. J. Hydrogen Energy., 40 (2015), pp.14104-14115.
  35. D'Orazio, A., Rapagna, S., Foscolo, P.U., Galluci, K., Nacken, M., Gas conditioning in H2 rich syngas production by biomass steam gasification: Experimental comparison between three innovative ceramic filter candles, Intl. J. Hydrogen Energy., 40 (2015), pp. 7282-7290.
  36. Butterman, H.C., Castaldi, M.J., CO2 as a Carbon Neutral Fuel Source via Enhanced Biomass Gasification, J. Env. Sci. Techn., 43 (2009), pp. 9030-9037.
  37. Garcia, L., Salvador, M.L., Arauzo, J., Bilbao, R., CO2 as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst, J. Fuel Processing Technology., 69 (2001), pp. 157-174.
  38. Ahmed, I., Gupta, A.K., Characteristics of cardboard and paper gasification with CO2, J. Applied Energy., 86 (2009), pp. 2626-2634.
  39. Renganathan, T., Yadav, M.V., Pushpavanam, S., Voolapalli, R.K., Cho, Y.S., CO2 utilization for gasification of carbonaceous feedstocks: A thermodynamic analysis, J. Chemical Engineering Science., 83 (2012), pp. 159-170.
  40. Sircar, I., Sane, A., Wang, W., Gore, J., Experimental and modeling study of pinewood char gasification with CO2, J. Fuel., 119 (2014), pp. 38-46.
  41. Porada S., Czerski G., Grzywacz P., Dziok T, Makowska D., Comparison of steam gasification kinetics of coal and its char, J. Przemysł Chemiczny., 93 (2014), pp. 2059-2063.
  42. Butler, E., Devlin, G., Meier, D., McDonnell, K., Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications, J. Bioresour. Technol., 131 (2013), pp. 202-209.
  43. Saastamoinen, J.J., Simplified model for calculation of devolatilazation in fludized beds, J. Fuel., 85 (2006), pp. 2388-2395.