International Scientific Journal

Thermal Science - Online First

online first only

Mitigation of nitrogen in the poultry litter to enhance biomethane production

The objective of the study is to lower the nitrogen content in the substrate to mitigate the ammonia nitrogen generated in the anaerobic digestion of poultry litter using air stripping technique. The effect of nitrogen mitigation on the biomethane yield from poultry litter was studied in batch experiments with an organic load of 8 kg for a hydraulic retention time of 21 days in mesophilic ambiance. Air stripping results indicate that the free ammonia stripping is greatly influenced by the pH of the substrate and the aeration time. It is observed that the Total Kjeldahl Nitrogen content in the poultry litter substrate is reduced from 6.9% to 3.69% that is about a reduction of 53%. A significant improvement in the biomethane yield was noticed for poultry litter of which nitrogen content is lowered at a pH of 11. The cumulative yield for air stripped substrate increased from 8.77 l/kg VS to 10.66 l/kg VS. The biomethane production from air stripped poultry litter shows improvement of 18% compared to the control test. From this results, it is evident that the reduction in the nitrogen content of the substrate using air stripping at high pH value is a possible option for enhancing the biomethanisation of poultry litter.
PAPER REVISED: 2017-03-16
PAPER ACCEPTED: 2017-04-13
  1. P.V. Rao, S.S. Baral, R. Dey, S. Mutnuri, Biogas generation potential by anaerobic digestion for sustainable energy development in India, Renew. Sustain. Energy Rev. 14 (2010) 2086-2094. doi:10.1016/j.rser.2010.03.031.
  2. A.B. Ct, Bioconversion of Poultry Droppings for Biogas and Algal Production, 18 (1986) 93-101.
  3. I.M. Nasir, T.I. Mohd Ghazi, R. Omar, Anaerobic digestion technology in livestock manure treatment for biogas production: A review, Eng. Life Sci. 12 (2012) 258-269. doi:10.1002/elsc.201100150.
  4. A. Crocamo, S. Di, R. Di, M. Fabbricino, S. Martins-dias, Biomass and Bioenergy An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveriazizanoides, Biomass and Bioenergy. 81 (2015) 288-293. doi:10.1016/j.biombioe.2015.07.023.
  5. P. Li, Q.-H. Wang, J. Zhang, T.-L. Zheng, J. Wang, Treatment of Mixed Wastewater of Slaughterhouse Wastewater and Biogas Slurry with Pilot Contact Oxidation System, 2012 Int. Conf. Biomed. Eng. Biotechnol. (2012) 1870-1873. doi:10.1109/iCBEB.2012.455.
  6. S. Borowski, L. Weatherley, Co-digestion of solid poultry manure with municipal sewage sludge, Bioresour. Technol. 142 (2013) 345-352. doi:10.1016/j.biortech.2013.05.047.
  7. Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: A review, Bioresour. Technol. 99 (2008) 4044-4064. doi:10.1016/j.biortech.2007.01.057.
  8. B.S.M. Jr, T.T. Adams, P. Johnston, Destruction of Organic Matter, 100 (1999) 240-243.
  9. B. Lauterbo, M. Ortner, R. Haider, W. Fuchs, Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor, 6 (2012) 0-8. doi:10.1016/j.watres.2012.05.022.
  10. H. Nie, H.F. Jacobi, K. Strach, C. Xu, H. Zhou, J. Liebetrau, Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate, Bioresour. Technol. 178 (2015) 238-246. doi:10.1016/j.biortech.2014.09.029.
  11. I.W. Koster, G. Lettinga, Anaerobic digestion at extreme ammonia concentrations, Biol. Wastes. 25 (1988) 51-59. doi:10.1016/0269-7483(88)90127-9.
  12. Y. Zhang, E.M. ZamudioCañas, Z. Zhu, J.L. Linville, S. Chen, Q. He, Robustness of archaeal populations in anaerobic co-digestion of dairy and poultry wastes, Bioresour. Technol. 102 (2011) 779-785. doi:10.1016/j.biortech.2010.08.104.
  13. S. Gu, Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent, 9 (2010) 61-66. doi:10.1016/j.psep.2010.11.001.
  15. M. Cogan, B. Antizar-ladislao, The ability of macroalgae to stabilise and optimise the anaerobic digestion of household food waste, Biomass and Bioenergy. 86 (2016) 146-155. doi:10.1016/j.biombioe.2016.01.021.
  16. A. Bonmatí, X. Flotats, Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion, Waste Manag. 23 (2003) 261-272. doi:10.1016/S0956-053X(02)00144-7.
  17. J.H. Patil, M. Lourdu, A. Raj, V. Dinesh, Kinetic Modeling of Anaerobic Co-digestion of Water Hyacinth and Poultry Litter, 3 (2013) 69-73.
  18. M. Rivas, D. Jeison, ScienceDirect Photosynthetic CO 2 uptake by microalgae : An attractive tool for biogas upgrading, 3 (2014) 3-10. doi:10.1016/j.biombioe.2014.10.032.
  19. H.S. Tira, Y.A. Padang, Mirmanto, Hendriono, Improving Biogas Quality through Circulated Water Scrubbing Method, Appl. Mech. Mater. 776 (2015) 443-448. doi:10.4028/
  20. J. Bousek, D. Scroccaro, J. Sima, N. Weissenbacher, W. Fuchs, Bioresource Technology Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate, Bioresour. Technol. 203 (2016) 259-266. doi:10.1016/j.biortech.2015.12.046.
  21. S.V.. and J.S. Deepanraj B. 1, Biogas Generation through Anaerobic Digetsion Process - An Overview Biogas Generation through Anaerobic Digestion Process-, Res. J. Chem. Environ. (2014).
  22. L. Zhang, Y.-W. Lee, D. Jahng, Ammonia stripping for enhanced biomethanization of piggery wastewater., J. Hazard. Mater. 199-200 (2012) 36-42. doi:10.1016/j.jhazmat.2011.10.049.
  23. G. Markou, Improved anaerobic digestion performance and biogas production from poultry litter after lowering its nitrogen content, Bioresour. Technol. 196 (2015) 726-730. doi:10.1016/j.biortech.2015.07.067.