THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Heat and mass transfer analysis on MHD blood flow of Casson fluid model due to peristaltic wave

ABSTRACT
In this article, heat and mass transfer analysis on MHD blood flow of Casson fluid model due to peristaltic wave has been investigated. The governing equations of blood flow for Casson fluid model, temperature, and energy equation have been solved by taking the assumption of long wavelength and neglecting the inertial forces. The resulting coupled differential equations have been solved analytically and the exact solutions are presented. The impact of various pertinent parameters is plotted and discussed. It is found that the influence of magnetic field and fluid parameter shows similar behavior on velocity profile while its behavior is opposite for pressure rise and pressure gradient profile. Trapping phenomena have also taken into account by sketching the streamlines. The expression for pressure rise and friction forces are evaluated numerically.
KEYWORDS
PAPER SUBMITTED: 2016-01-02
PAPER REVISED: 2016-09-11
PAPER ACCEPTED: 2016-10-25
PUBLISHED ONLINE: 2016-12-03
DOI REFERENCE: https://doi.org/10.2298/TSCI160102287R
REFERENCES
  1. Srivastava, V.P., Saxena, M., Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system, J. Biomech., 27 (1994), pp. 921-928.
  2. Srivastava, V.P., Particle-fluid suspension model of blood flow through stenotic vessels with applications, Int. J. bio-med. comput., 38 (1995) pp. 141-154.
  3. Srivastava, V.P., Saxena, M., A two-fluid model of non-Newtonian blood flow induced by peristaltic waves, Rheologica Acta, 34 (1995), pp. 406-414.
  4. Mekheimer, K.S., Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels, Appl. Math. Comput., 153 (2004) pp. 763-777.
  5. Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L., Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech. 37 (1969) pp. 799-825.
  6. Srivastava, L.M., Srivastava, V.P., Peristaltic transport of a power-law fluid: Application to the ductus efferentes of the reproductive tract, Rheol. Acta, 27,(1988) pp. 428-433.
  7. Gupta, B.B., Seshadri, V., Peristaltic pumping in non-uniform tubes, J. Biomech., 9 (1976) pp. 105-109.
  8. Beg, O. A., Rashidi, M. M., Beg, T. A., Asadi, M., Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film in a porous medium: A model for magneto-bio-rheological lubrication, J. Mech. Med. Biol., 12(03), (2012) 1250051.
  9. Beg, O. A., Rashidi, M. M., Akbari, M., Hosseini, A., Comparative numerical study of single-phase and two-phase models for bio-nano fluid transport phenomena, J. Mech. Med. Biol., 14(01),(2014) 1450011.
  10. Rashidi, M.M., Keimanesh, M., Beg, O.A., Hung, T.K., Magnetohydrodynamic biorheological transport phenomena in a porous medium: a simulation of magnetic blood flow control and filtration, Int. J. Numer. Method. Biomed. Eng., 27 (2011) pp. 805-821.
  11. Akbar, N.S., Heat and mass transfer effects on Carreau fluid model for blood flow through a tapered artery with a stenosis, Int. J. Biomath., 7 (2014), pp. 1450004
  12. Akbar, N.S., Wahid Butt, A., Noor, N.F.M., Heat transfer analysis on transport of copper nano fluids due to metachronal waves of cilia, Current Nanosci., 10 (2014), pp. 807-815.
  13. Nadeem, S., Riaz. A., Ellahi, R., Akbar, N.S., Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct, Appl. Nanosci., 4 (2014), pp. 613-624.
  14. Ellahi, R., Mubashir Bhatti, M., Vafai, K., Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct, Int. J. Heat. Mass. Trans., 71 (2014), pp. 706-719.
  15. Reddy, M. G., Makinde, O. D., Magnetohydrodynamic peristaltic transport of Jeffrey nano fluid in an asymmetric channel, J. Mol. Liq., 223 (2016), pp. 1242-1248.
  16. Reddy, M. G., Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip, Alexandria Eng. J., (2016).
  17. Reddy, M. G., Reddy, K. V., Influence of Joule heating on MHD peristaltic flow of a nano fluid with compliant walls, Procedia Eng., 127 (2015) pp. 1002-1009.
  18. Bhatti, M. M., Zeeshan, A., Ellahi, R., Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles, Comp. Biol. Med., 78 (2016) pp. 29-41.
  19. Bhatti, M. M., Zeeshan, A., Ellahi, R., Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model. Comp. Method. Prog. Biomed., 137 (2016) pp. 115-124.
  20. Bhatti, M. M., Ellahi, R., Zeeshan, A., (2016) Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls, J. Mol. Liq., 222 (2016) pp. 101-108.
  21. Mekheimer, K.S., Effect of the induced magnetic field on peristaltic flow of a couple stress fluid, Phys. Lett. A., 372 (2008), pp. 4271-4278.
  22. Mekheimer, K.S., Salem, A.M., Zaher, A.Z., Peristatcally induced MHD slip flow in a porous medium due to a surface acoustic wavy wall, J. Egypt. Math. Soc., 22 (2014), pp. 143-151.
  23. Rashidi, M.M., Nasiri, M., Khezerloo, M., Laraqi, N., Numerical investigation of magnetic field effect on mixed convection heat transfer of nano fluid in a channel with sinusoidal walls, J. Magn. Magn. Mater., 401 (2016) pp. 159-168.
  24. Sheikholeslami, M., Rashidi, M.M., Ganji, D.D., Numerical investigation of magnetic nano fluid forced convective heat transfer in existence of variable magnetic field using two phase model, J. Mol. Liq., 212 (2015), pp. 117-126.