International Scientific Journal


The development of electric vehicles is an important trend in the automotive industry, in which the performance of power batteries is greatly affected by temperature. In recent years, it has been widely concerned that the performance of power batteries at low temperature will lead to the vehicle failure to start because of the bad thermal equilibrium of power battery heating system. This paper studies the thermal equilibrium performance of battery liquid heating system at low temperature. Inlet temperature, heating time, ambient temperature, and their coupling relationship to battery thermal equilibrium performance are studied by orthogonal experimental design method. It is expected that this study can provide reference for the parameter selection of battery heating system.
PAPER REVISED: 2020-03-01
PAPER ACCEPTED: 2020-03-06
CITATION EXPORT: view in browser or download as text file
  1. Takaki A, Toyoaki N, Hideaki H, et al. Development of a High-Power Battery Cooling System for Series HEVs. Belgium, Brussels: EVS-15, 1998.
  2. Guo G, Long B, Cheng B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application(J). Journal of Power Sources, 2010, 195(8): 2393-2398.
  3. Wu M S, Wang Y Y, Wan C C. Thermal behaviour of nickel/metal hydride batteries during charge and discharge(J). Journal of Power Sources, 1998, 74(2): 202-210.
  4. Jiateng, Zhao, Zhonghao, et al. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles(J). Applied Thermal Engineering, 2015, 85: 33-43.
  5. Bitsche O, Gutmann G. Systems for hybrid cars(J). Journal of Power Sources, 2004, 127(1-2): 8-15.
  6. Khateeb S A, Amiruddin S, Farid M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation(J). Journal of Power Sources, 2005, 142(1-2): 345-353.
  7. Ishikawa H, Mendoza O, Nishikawa Y, et al. Thermal characteristics of lithium ion secondary cells in high temperature environments using an accelerating rate calorimeter(J). Journal of Renewable and Sustainable Energy, 2013, 5(4): 043122.
  8. E P Weidmann, J Widemann, T Binner, et al. Under hood Temperature Analysis in Case of Natural Convection. SAE Paper: 2005-01-2045.
  9. Bhutta M M A, Hayat N, Bashir M H, et al. CFD applications in various heat exchangers design: A review(J). Applied Thermal Engineering, 2012, 32: 1-12.
  10. Kim K B, Choi K W, Lee K H, et al. Active coolant control strategies in automotive engines(J). International Journal of Automotive Technology, 2010, 11(6): 767-772.
  11. Mohammadian S K, He Y L, Zhang Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes(J). Journal of Power Sources, 2015, 293: 458-466.
  12. Kizilel R, Lateef A, Sabbah R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature(J). Journal of Power Sources, 2008, 183(1): 370-375.
  13. Bandhauer T M, Garimella S. Passive, internal thermal management system for batteries using microscale liquid-vapor phase change(J). Applied Thermal Engineering, 2013, 61(2): 756-769.
  14. Xu X M, Sun X D, Hu D H, et al. Research on heat dissipation performance and flow characteristics of air-cooled battery pack(J). International Journal of Energy Research, 2018, 42(11): 3658-3671.
  15. Xu X M, Fu J Q, Jiang H B, et al. Research on the heat dissipation performance of lithium-ion cell with different operating conditions(J). International Journal of Energy Research, 2017, 41(11): 1642-1654.
  16. Saw L H, Ye Y, Tay A A O, et al. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling(J). Applied Energy, 2016, 177: 783-792.
  17. Shang Z, Qi H, Liu X, Ouyang C, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system(J). International Journal of Heat and Mass Transfer, 2019, 130: 33-41.
  18. Z.Q. Zhang, J. Cheng, X.D. He, Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons(J). International Journal of Heat and Mass Transfer, 2017, 112: 959-971.
  19. Zhao S X, Guo S T, Zhao J W, et al. Development on Low-temperature Performance of Lithium Ion Batteries(J). Journal of the Chinese Ceramic Society, 2016, 44(01): 19-28. (赵世玺,郭双桃,赵建伟,宋宇,南策文.锂离子电池低温特性研究进展(J).硅酸盐学报,2016,44(01):19-28.)
  20. Li G, Huang X D, Fu X F, et al. Design Research on Battery Heating and Preservation System Based on Liquid Cooling Mode(J). Journal of Hunan University, 2017, 44(2): 26-33. (李罡,黄向东,符兴锋,等.液冷动力电池低温加热系统设计研究(J).湖南大学学报(自然科学版), 2017, 044(002):26-33.)
  21. Zhang R Q, He S Q, Wang H H. Evaluation and research on the high performance 18650 type lithium batteries of rate and low temperature electrochemical performance(J). Chinese Battery Industry, 2016, 20(01): 9-12. (张润强,何双全,王洪湖.高性能18650型锂离子电池倍率和低温电化学性能的评估及研究(J).电池工业,2016,20(01):9-12.)
  22. Song H S, Jeong J B, Lee B H, et al. Experimental study on the effects of pre-heating a battery in a low-temperature environment
  23. Shuai X F, Liu K J, Ye X N. Research on low-temperature auxiliary heat method for lithium-ion batteries(J). Henan Science and Technology, 2015(22): 65. (帅晓锋,刘克金,叶新娜.锂离子电池低温辅热方法研究(J).河南科技,2015(22):65.)
  24. Lei Z G, Zhang C N, Dong Y G, et al. Low-temperature Performance and Heating Method of Lithium Battery in Electric Vehicles(J). Journal of Beijing University of Technology, 2013, 39(9): 1399-1404. (雷治国,张承宁,董玉刚,林哲炜.电动汽车用锂离子电池低温性能和加热方法(J).北京工业大学学报,2013,39(9):1399-1404.)
  25. Luo Y T, Lang C Y, Luo B S E. Investigation into Heating System of Lithium-Ion Battery Pack in Low-Temperature Environment(J). Journal of South China University of Technology (Natural Science Edition), 2016, 44(9): 100-106. (罗玉涛,郎春艳,罗卜尔思.低温环境下锂离子电池组加热系统研究(J).华南理工大学学报(自然科学版),2016,44(9):100-106.)
  26. Stuart T A, Hande A. HEV battery heating using AC currents(J). Journal of Power Sources, 2004, 129(2): 368-378.
  27. Salameh Z M, Alaoui C. Modeling and simulation of a Thermal Management System for Electric Vehicles
  28. Li B, Ding C J, Sun Q S, et al. Research on Influence of Pre-heating to Charging Character on Lithium Iron Phosphate Battery(J). Bus & Coach Technology and Research, 2012, 34(03): 25-27. (李兵,丁传记,孙全胜,刘超.预加热对磷酸铁锂动力电池充电性能影响的研究(J).客车技术与研究,2012,34(03):25-27.)
  29. Pan C J, Guo H F. Research on Insulation and Heating of Battery Packs for Electric Vehicles
  30. Zhang C N, Lei Z G, Dong Y G. Method for Heating Low-Temperature Lithium Battery in Electric Vehicle(J). Transactions of Beijing Institute of Technology, 2012, 32(9): 921-925. (张承宁,雷治国,董玉刚.电动汽车锂离子电池低温加热方法研究(J).北京理工大学学报,2012,32(9):921-925.)
  31. Zhao W D, Gu Z Q, Liu S C, et al. Research on the Adaptability and Heat Dispersion of Battery Pack Turbulence Model(J). Journal of Hunan University of Technology, 2015, 29(02): 8-13. (赵万东,谷正气,刘水长,梁敏.电池包流场湍流模型适应性与散热性能研究(J).湖南工业大学学报,2015,29(02):8-13.)
  32. He F, Li X, Ma L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells(J). International Journal of Heat and Mass Transfer, 2014, 72: 622-629.
  33. Liu Y P, Ouyang C Z, Jiang Q B, et al. Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow(J). Journal of Central South University, 2015, 22(10): 3970-3976.

© 2021 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence