THERMAL SCIENCE

International Scientific Journal

ENHANCED SOLAR ENERGY ABSORPTION ON NITROGEN-DOPED CARBON NANOTUBES DECORATED WITH GOLD-PALLADIUM BIMETALLIC NANOPARTICLES

ABSTRACT
Gold-palladium alloy nanoparticles decorated on nitrogen-doped carbon nanotubes (Au-Pd/N-CNTs) were prepared by using poly ethylene imine (PEI) reduction method. PEI acts as not only a stabilizing agent, but also a reducing agent, leading to nucleation and growth of nanoparticles (NPs) on the NCNTs surfaces. All the N-CNTs-based nanofluids show broadband absorption across the visible region and near-infrared region. The Au-Pd/N-CNTs nanofluids absorb more solar irradiation compared with monometallic Pd/N-CNTs or Au/N-CNTs nanofluid. The photothermal conversion efficiency of Au-Pd/N-CNTs nanofluids is 62.3%, compared with 53.3% and 57% for Pd/N-CNTs and Au/N-CNTs respectively. This enhancement was mainly due to the synergetic effects of N-CNTs and Au-Pd alloy NPs.
KEYWORDS
PAPER SUBMITTED: 2017-06-20
PAPER REVISED: 2017-12-02
PAPER ACCEPTED: 2017-12-04
PUBLISHED ONLINE: 2018-02-18
DOI REFERENCE: https://doi.org/10.2298/TSCI170620055W
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Supplement 2, PAGES [S701 - S708]
REFERENCES
  1. Lefebvre, D., Tezel, F. H., A Review Energy Storage Technologies with a Focus on Adsorption Thermal Energy Storage Processes for Heating Applications, Renewable & Sustainable Energy Reviews, 67 (2017), pp. 116-125.
  2. Shannon, M. A., Science and Technology for Water Purification in the Coming Decades, Nature, 452 (2008), pp. 301-310.
  3. Narayan, G. P., The Potential of Solar-Driven Humidification-Dehumidification Desalination for Small-Scale Decentralized Water Production, Renewable & Sustainable Energy Reviews, 14 (2010), pp. 1187-1201.
  4. Das, S. K., Choi, S. U., Yu, W., Pradeep, T., Nanofluids: Science and Technology, John Wiley & Sons Inc., 2007.
  5. Choi, S., Siginer, D. A., Wang, H. P., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows. ASME, 231 (1995), (MD 66), pp. 99-105
  6. Baffou, G., Quidant, R., Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat, Laser Photonics Reviews, 7 (2013), pp. 171-187.
  7. Baffou, G., Quidant, R., García de Abajo, F. J., Nanoscale Control of Optical Heating in Complex Lasmonic Systems, ACS Nano, 4 (2010), pp. 709-716.
  8. Pinchuk, A., Plessen, G. V., Kreibig, U., Influence of Interband Electronic Transitions on the Optical Absorption in Metallic Nanoparticles, Journal of Physics D: Applied Physics, 37 (2004), pp.3133-3139.
  9. Yamada, K., Miyajima, K., Mafun, F., Thermionic Emission of Electrons from Gold Nanoparticles by Nanosecond Pulse-Laser Excitation of Interband, Journal of Physical Chemistry C, 111 (2007), pp. 11246-11251
  10. Xuan,Y. M., Duan, H. L., Li, Q., Enhancement of Solar Energy Absorption using a Plasmonic Nanofluid based on TiO2/Ag Composite Nanoparticles, RSC Advances, 4 (2014), pp. 16206-16213.
  11. Chen, M. J., He,Y. R., Zhu, J. Q., Kim, D. R., Enhancement of Photo-Thermal Conversion using Gold Nanofluids with Different Particle Sizes, Energy Conversion and Management, 112 (2016), pp. 21-30.
  12. Horinouchi, S., Yamanoi, Y., Yonezawa, T., Mouri, T., and Nishihara, H., Hydrogen Storage Properties of Isocyanide-Stabilized Palladium Nanoparticles, Langmuir, 22 (2006), pp. 1880- 1884.
  13. Harpeness, R., Gedanken, A., Microwave Synthesis of Core-Shell Gold/Palladium Bimetallic Nanoparticles, Langmuir, 20 (2004), pp. 3431-3434.
  14. Chen, X., Cai, Z., Chen, X., and Oyama, M., AuPd Bimetallic Nanoparticles Decorated on Graphene Nanosheets: Their Green Synthesis, Growth Mechanism and High Catalytic Ability in 4-Nitrophenol Reduction, Journal of Materials Chemistry A, 2 (2014), pp. 5668-5674
  15. Sarina, S., Zhu, H. Y., Jaatinen, E., Xiao, Q., Liu, H. W., Jia, J. F., Chen, C. and Zhao, J., Enhancing Catalytic Performance of Palladium in Gold and Palladium Alloy Nanoparticles for Organic Synthesis Reactions through Visible Light Irradiation at Ambient Temperatures, Journal of the American Chemical Society, 135 (2013), pp. 5793-5801.
  16. Darabdhara, G., Das, M. R., Turcheniuk,V., Turcheniuk, K., Zaitsev, V., Boukherroub R., and Szunerits, S., Reduced Graphene Oxide Nanosheets Decorated with AuPd Bimetallic Nanoparticles: a Multifunctional Material for Photothermal Therapy of Cancer Cells, Journal of Materials Chemistry B, 3 (2015), pp. 8366-8374.
  17. Taylor, R. A., Phelan, P., Otanicar, T., Adrian, R., Prasher, R., Nanofluid Optical Property Characterization: towards Efficient Direct Absorption Solar Collectors, Nanoscale Research Letters, 6 (2011), pp. 225-236.
  18. Taylor, R.A., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., Tyagi, H., Small Particles, Big Impacts: a Review of the Diverse Applications of Nanofluids, Journal of Applied Physics , 113 (2013), pp. 011301-1-19.
  19. Yu, W., Xie, H., A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, Journal of Nanomaterials, 2012 (2012), pp. 1-17
  20. Lee, J. M., Park, J. Lee, S. S., Kim, H. H., Yoo S. and Kim, S. O., Selective Electron- or Hole- Transport Enhancement in Bulk-Heterojunction Organic Solar Cells with N- or B-Doped Carbon Nanotubes, Advanced Materials, 23 (2011), pp. 629-633.
  21. Wang, L. L., Wang, L. J., Jin, H. Y., Bing, N. C., Nitrogen-Doped Carbon Nanotubes with Variable Basicity: Preparation and Catalytic Properties, Catalysis Communications, 15 (2011), 78-81.
  22. Park, J. S., Lee, J. M., Hwang, S. K., Lee, S. H., Lee, H. J., Lee, B. R., Park, H. I., Kim, J. S., Yoo, S., Song, M. H., Kim, S. O., A ZnO/N-doped Carbon Nanotube Nanocomposite Charge Transport Layer for High Performance Optoelectronics, Journal of Materials Chemistry, 22 (2012), pp. 12695-12700.
  23. Wang, L. L., Zhu, L. P., Bing, N. C., Wang, L. J., Facile Green Synthesis of Pd/N-doped Carbon Nanotubes Catalysts and Their Application in Heck Reaction and Oxidation of Benzyl Alcohol, Journal of Physics and Chemistry of Solids, 107 (2017) pp. 125-130
  24. Wang, L. L., Zhu, G. H., Yu, W., Zhu, D. H., Zhang, Y. C., Zhang, L. Y., Xie, H. Q., Photothermal Properties of Near-Spherical Gold Nanofluids with Strong Localized Surface Plasmon Resonance, Journal of Thermal Science and Engineering Applications, 10 (2018), pp 011015. 1-5.
  25. Chen, N., Ma, H. Y., Li, Y., Cheng, J. H., Zhang, C. Y., Wu, D. X., Zhu, H. T., Complementary Optical Absorption and Enhanced Solar Thermal Conversion of CuO-ATO Nanofluids, Solar Energy Materials & Solar Cells, 162 (2017) pp. 83-92.
  26. Turcheniuk, K., Hage, C.-H., Spadavecchia, J., Serrano, A. Y., Larroulet, I., Pesquera, A., Zurutuza, A., Pisfil, M. G., Heliot, L., Boukaert, J., Boukherroub, R., and Szunerits, S., Plasmonic Photothermal Destruction of Uropathogenic E. coli with Reduced Graphene Oxide and Core/shell Nanocomposites of Gold Nanorods/reduced Graphene Oxide, Journal of Materials Chemistry B, 3 (2015), pp. 375-38
  27. N. Hordy, D. Rabilloud, J. L. Meunier, S. Coulombe, High Temperature and Long-Term Stability of Carbon Nanotube Nanofluids for Direct Absorption Solar Thermal Collectors, Solar Energy, 105 (2014), pp. 82-90
  28. Drotning, W. D., Optical Properties of Solar-absorbing Oxide Particles Suspend in a Molten Salt Heat Transfer Fluid, Solar Energy, 20 (1978), pp. 313-319.

© 2018 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence