International Scientific Journal

Authors of this Paper

External Links


In this research an analytical study has been conducted to determine flame propagation speed and quenching distance of aluminum dust particle in an oxygenated medium with different neutralized gas including nitrogen, argon, and helium which acts as the oxidizer carrier gas. Flame propagation speed as a function of aluminum dust cloud concentration has been studied based on a thermal diffusion model. Additionally quenching distance for different dust particle concentration in the intended neutralize gas is investigated. Reasonable agreement between the present analytical model and experimental results reported in literature has been observed in terms of flame propagation speed in different dust concentrations.
PAPER REVISED: 2017-10-01
PAPER ACCEPTED: 2017-10-01
CITATION EXPORT: view in browser or download as text file
  1. Goroshin, S., Fomenko, I., Lee, J. H. S., Burning Velocities in Fuel-Rich Aluminum Dust Clouds, Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, (1996), pp. 1961-1967
  2. Eckhoff,. R, Dust explosions in the process industries: identification, assessment and control of dust hazards. Gulf Professional Publishing, Houston (2003)
  3. Timothy J. Myers, Reducing aluminum dust explosion hazards: Case study of dust inerting in an aluminum buffing operation, Journal of Hazardous Materials, 159 (2008), pp. 72-80
  4. Li, Q., Lin, B., Li W., Zhai C., Zhu C, Explosion characteristics of nano-aluminum powder-air mixtures in 20 L spherical vessels. Powder Technol 212 (2011), pp. 303-309
  5. Yang, V., Brill, T.B., Ren, W.Z. (Eds.), Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, AIAA Progress in Aeronautics and Astronautics, (2000), p. 663.
  6. Price, E.W., Combustion of Metalized Propellants, In: K.K. Kuo, M. Summerfield (Eds.), Progr Astronaut Aero 90, Am Inst Aeronaut Astronaut, New York, (1984), pp. 479-514.
  7. Washburn, E. B., Trivedi, J. N., Catoire, L., Beckstead, M. W., The simulation of the combustion of micrometer-sized aluminum particles with steam, Combust. Sci. and Tech., 180 (2008), pp. 152-1517
  8. Kim, C.K., Moon, J.G., Hwang, J.S., Lai, M.C., Im, K.S., Afterburning of TNT explosive products in air with aluminum particles, 46th AIAA Aerospace Sciences Meeting, Reno, NV, (2008).
  9. Price, E. W. Fundamentals of Solid-Propellant Combustion", Progress in Astronautics and Aeronautics, Vol. 90(Summerfield, M., Ed.), AIAA Inc., New York, pp. 479. 1984
  10. Chen, J. L., Dobashi, R., Hirano, T. Mechanisms of flame propagation through combustible particle clouds. Journal of Loss Prevention in the Process Industries, 9(3) (1996), pp. 225-229.
  11. Seshadri, K., Berlad, A. L., Tangirala, V. The structure of premixed particle-cloud flames. Combustion and Flame, 89 (1992), pp.333-342.
  12. Sun, J, Dobashi, R, Hirano, T, Structure of flames propagating through aluminum particles cloud and combustion process of particles, Journal of Loss Prevention in the Process Industries 19 (2006) pp.769-773,
  13. Wilson Jr R.P., Williams F.A., Experimental study of the combustion of single aluminum particles in O2/Ar, Symposium (International) on Combustion, 13(1) (1971), pp.833-845,
  14. Bucher, P., Yetter, R. A., Dryer, F. L., Flame structure measurements of single, isolated aluminum particles burning in air, Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, (1996) pp.1899-1908,
  15. Dreizin, E.L., Experimental Study of Aluminum Particle Flame Evolution in Normal and Micro-Gravity, Combustion and flame 116 (1999), pp.323-333
  16. Goroshin, S., Bidabadi, M., Lee, J. H. S., Quenching distance of laminar flame in aluminum dust clouds, Combustion and Flame, 105 (1996), pp.147-160,
  17. Boichuk, L., Shevchuk, V., Shvets, A., Flame propagation in two-component aluminum-boron gas suspensions, Combustion, Explosion and Shock Waves, 38(6) (2002) pp.651-654.
  18. Friedman, R., Macek, A., Ignition and Combustion of Aluminum Particles in Hot Ambient Gases, Combust. Flame 1962, 6, 9.
  19. Kwon, Y.S., Gromov, A.A., IIyin, A.P., Popenko, E.M., Rim, G.H., The mechanism of combustion of superfine aluminum powders, Combustion and Flame, 133(4) (2003), pp. 385-391,
  20. Tim Bazyn, Herman Krier, Nick Glumac, "Oxidizer and Pressure Effects on the Combustion of 10-μm Aluminum Particles", Journal of Propulsion and Power, 21(4) (2005)
  21. Robert J. Gill, Carlo Badiola, Edward L. Dreizin, Combustion times and emission profiles of micron-sized aluminum particles burning in different environments, Combustion and Flame 157 (2010) pp. 2015-2023,
  22. Bucher, P., Yetter, R. A., Dryer, F. L., Vicenzi, E. P., Condensed-phase Species Distributions about Al Particles Reacting in Various Oxidizers, Combustion and Flame 117 (1999), pp. 351-361
  23. Julien, P, Vickery, J, Goroshin, S, Frost, D. L, Bergthorson, J. M, Freely-propagating flames in aluminum dust clouds, Combustion and Flame (2015) pp. 1-13,
  24. Julien, P, Vickery, J, Whiteley, S, Wright, A, Goroshin, S, Bergthorson, J. M, Frost, D. L, Effect of scale on freely propagating flames in aluminum dust clouds, Journal of Loss Prevention in the Process Industries 36 (2015) pp. 230-236
  25. Soo, M, Julien, P, Goroshin, S, Bergthorson, J. M, Frost, D. L, Stabilized flames in hybrid aluminum-methane-air mixtures, Proceedings of the Combustion Institute 34 (2013) pp. 2213-2220
  26. Goroshin, S, Mamen, J, Higgins, A, Bazyn, T, Glumac, N, Krier, H, Emission spectroscopy of flame fronts in aluminum suspensions, Proceedings of the Combustion Institute 31 (2007) pp. 2011-2019
  27. Beckstead, M. W., Correlating Aluminum Burning Times, Combustion, Explosion, and Shock Waves, 41(5) (2005), pp. 533-546
  28. Bidabadi, M., Mohammadi, M., Poorfar, A.K., Mollazadeh, S., Zadsirjan, S., Modeling combustion of aluminum dust cloud in media with spatially discrete sources, Heat Mass Transfer, 51(6) (2015) pp 837-845
  29. Shoshin, Y.L., Dreizin, E.L., Particle combustion rates for mechanically alloyed Al-Ti and aluminum powders burning in air, Combustion and Flame, 145 (4) (2006), pp. 714-722.
  30. Glassman, Metal Combustion Processes, 14th Annual Meeting of the American Rocket Society, (1959)pp. 938-959.
  31. Belyaev, A.F., Frolov, Y.V., Korotkov, A.I., Combustion and Ignition of Particles of Finely Dispersed Aluminum, Combustion, Explosion & Shock Waves, 4(3) (1968) pp. 323-329.
  32. Macek, A., Fundamentals of Combustion of Single Aluminum and Beryllium Particles, Eleventh Symposium (International) on Combustion, 11 (1967) pp. 203-217.
  33. Friedman, R., Macek, A., Combustion Studies of Single Aluminum Particles, Ninth Symposium (International) on Combustion, 9 (1963) pp. 703-709.
  34. Dreizin, E.L., Trunov, M.A., Surface Phenomena in Aluminum Combustion, Combustion and Flame, 101(3) (1995) pp. 378-382.
  35. Brooks, K.P., Beckstead, M.W., Dynamics of Aluminum Combustion, Journal of Propulsion and Power, 11(4) (1995) pp. 769-780.
  36. Beckstead MW. Correlating aluminum burning times. Combust Explos Shock Waves pp. 41 (2005) pp.533-46.
  37. Brzustowski, T.A., Glassman, I., Spectroscopic Investigation of Metal Combustion, Heterogeneous Combustion, Academic Press, New York, (1964) pp. 41-74.
  38. Bidabadi, M., Poorfar, A., Wang, Sh., Bengt, S., A comparative study of different burning time models for the combustion of aluminum dust particles, Applied Thermal Engineering, 105 (2016), pp. 474-482.
  39. Julien, P, Vickery, J, Whiteley, S, Wright, A, Goroshin, S, Bergthorson, J. M, Frost, D. L, Effect of scale on freely propagating flames in aluminum dust clouds, Journal of Loss Prevention in the Process Industries 36 (2015) pp. 230-236

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence