International Scientific Journal

Authors of this Paper

External Links


The effect of the pin-fin shapes on the overall performance of the carbon nanotube bundles as porous micro pin-fins with in-line and staggered arrangement for the heat transfer and pressure drop is studied using FLUENT 15.0. The results of the study revealed that at 100 < Re < 2000, triangle has the best performance followed by square, rectangle, hexagon and circle in 1 mm height, 15 mm width, and 45 mm length silicon rectangular mini-channel. The staggered configuration gave better heat transfer performance than in-line arrangement at all Reynolds numbers for all shapes with up to 19% thermal improvement but with up to 79% pressure drop differential. On a mini-channel surface with nanotube fins, the nanofluid (0.001 to 1%) increases the thermal performance up to 40% in comparison with water. The best thermal performance enhancement of 106% was obtained by using staggered triangular fins with larger fin height of 0.75 mm, smaller fin width of 0.5 mm, and spacing double the fin width and 0.01% CuO-water nanofluid followed by 103% with 0.01% Al2O3-water in comparison to channels with inline circular fins and water.
PAPER REVISED: 2017-09-20
PAPER ACCEPTED: 2017-09-22
CITATION EXPORT: view in browser or download as text file
  1. Chen, H. T., Chen, P. L., Horng, J. T., Hung, Y. H., Design optimization for pin-fin heat sinks, J. Electron. Packag., 127 (2005) pp. 397-406
  2. Park, K., Choi, D. H., Lee, K. S., Numerical shape optimization for high performance of a heat sink with pin-fins, Numer. Heat Transfer Part A, 46 (2004) pp. 909-927
  3. Park, K., Rew, K. H., Kwon, J. T., Kim, B. S., Optimal solutions of pin-fin type heat sinks for different fin shapes, J. Enhanc. Heat Transf., 14 (2007) pp. 93-104
  4. Abdel-Rehim, Z. S., Optimization and thermal performance assessment of pin-fin heat sinks, Energ. Source Part A, 31 (2009), pp. 51-65
  5. Kosar, A., Peles, Y., TCPT-2006-096.R2: Micro scale pin-fin heat sinks - Parametric performance evaluation study, IEEE Trans. Compon. Packag. Technol., 30 (2007) pp. 855-865
  6. Peles, Y., Kosar, A., Mishra, C., Kuo, C. J., Schneidern, B., Forced convective heat transfer across a pin-fin micro heat sink, Int. J. Heat Mass Transfer, 48 (2005) pp. 3615-3627
  7. Chapman, C. L., Lee, S., Schmidt, B. L., Thermal Performance of an Elliptical Pin-fin Heat Sink, Proc. 10th IEEE Semi-Therm., San José, California, USA, 1994, pp. 24-31
  8. John, T. J., Mathew, B. Hegab, H., Characteristic Study on the Optimization of Pin-Fin Micro Heat Sink, ASME Int. Mech. Eng. Cong. & Expos. Lake Buena Vista, FL, USA, 2009, pp. 1373-1380
  9. Dwivedi, K., Malviya, R. K., Sinha, R., FVM Analysis for Thermal and Hydraulic Behaviour of Circular Finned MPFHS by Using Ag-H2O Nano Fluid, Int. J. Eng. Res. Appl., 4 (2014) pp. 64-68
  10. Hasan, M. I., Investigation of flow and heat transfer characteristics in micro pin-fin heat sink with nanofluid, Appl. Therm. Eng., 63 (2014) pp. 598-607
  11. Alfaryjat, A. A., Mohammed, Y. A., Adam, N. M., Ariffin, M. K. A., Najafabadi, M. I., Influence of geometrical parameters of hexagonal, circular, and rhombus microchannel heat sinks on the thermo hydraulic characteristics, Int. Commun. Heat Mass, 52 (2014) pp. 121-131
  12. Naphon, P., Farkade, L. N., Heat transfer of nanofluids in the mini-rectangular fin heat sinks, Int. Commun. Heat Mass, 40 (2013) pp. 25-31
  13. Seyf, H. R., Feizbakhshi, M., Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks, Int. J. Therm. Sci., 58 (2012) pp. 168-179
  14. John, T. J., Mathew, B., Hegab, H., Parametric study on the combined thermal and hydraulic performance of single phase micro pin-fin heat sinks part I: square and circle geometries, Int. J. Therm. Sci., 49 pp. (2010) pp. 2177-2190
  15. Ricci, R., Montelpare, S., An experimental IR thermo graphic method for the evaluation of the heat transfer coefficient of liquid-cooled short pin-fins arranged in line, Exp. Therm. Fluid Sci., 30 (2006) pp. 381-391
  16. Soodphakdee, D., Behnia, M., Copeland, D. W., A comparison of fin geometries for heat sinks in laminar forced convection: part 1- round, elliptical and plate fins in staggered and inline configuration, Int. J. Microcircuits Electron. Packag., 24 (2001) pp. 68-76
  17. Wirtz, R. A., Sohal, R., Wang, H., Thermal Performance of Pin-Fin Fan-Sink Assemblies, J. Electron. Packag., 119 (1997) pp. 26-31
  18. Sparrow, E. M., Larson, E. D., Heat Transfer from Pin-Fins Situated in an Oncoming Longitudinal Flow which Turns to Crossflow, Int. J. Heat Mass Transfer, 25 (1982) pp. 603-614
  19. Larson, E. D., Sparrow, E. M., Shorter Communications in Heat Transfer from Pin-fins Situated in an Oncoming Longitudinal Flow which Turns to Crossflow, Int. J. Heat Mass Transfer, 25 (1982) pp. 723-725
  20. Bejan, A. Morega, A. M., Optimal Arrays of Pin-fins and Plate Fins in Laminar Forced Convection, J. Heat Transf., 115 (1993) pp. 75-81
  21. Wirtz, R. A., Colban, D. M., Comparison of the Cooling Performance of Staggered and In-Line Arrays of Electronic Packages, J. Electron. Packag., 118 (1996) pp. 27-30
  22. Sathyamurthy, P., Runstadler, P. W., Lee, S., Numerical and Experimental Evaluation of Planar and Staggered Heat Sinks, Proc. 5th Itherm., Orlando, Florida, USA, 1996, pp. 132-139
  23. Zhang, L. W., Balachandar, S., Tafti, D. K., Najjar, F., Heat Transfer Enhancement Mechanisms in Inline and Staggered Parallel-Plate Fin Heat Exchanger, Int. J. Heat Mass Transfer, 40 (1997) pp. 2307-2325
  24. Barrett, A. V., Obinelo, I. F., Characterization of Longitudinal Fin Heat Sink Thermal Performance and Flow Bypass Effects through CFD Methods, Proc. 13th IEEE Semi-Therm., Austin, Texas, USA, 1997, pp. 158-164
  25. Wirtz, R. A., Chen, W., Zhou, R., Effect of Flow Bypass on the Performance of Longitudinal Fin Heatsinks, J. Electron. Packag., 116 (1994) pp. 206-211
  26. Iwasaki, H., Sasaki, T., Ishizuka, M., Cooling Performance of Plate Fins for Multichip Modules, IEEE Trans. Compon. Packag., Manuf. Technol. A, 18 (1995) pp. 592-595
  27. Ansys, ANSYS Fluent 15.0 Theory Guide, ANSYS Inc., Canonsburg, PA, USA, 2013, pp. 1-780
  28. Zhong, X., Fan, Y., Liu, J., Zhang, Y., Wang, T., Cheng, Z., A Study of CFD Simulation for On-chip Cooling with 2D CNT Micro-Fin Array, Proc. Int. Symp. High Dens. packag. & Microsys. Integ., China, 2007, Vol. 7, pp. 442-447
  29. Shenoy, S., Tullius, J. F., Bayazitoglu, Y., Mini-channels with Carbon Nanotube Structured Surfaces for Cooling Applications, Int. J. Heat Mass Transfer, 54 (2011) pp. 5379-5385
  30. Jonsson, H., Moshfegf, B., Modeling of the Thermal and Hydraulic Performance of Plate fin, Strip Fin, and Pin Fin Heat Sinks - Influence of Flow bypass, IEEE Trans. Compon. Packag. Technol., 24 (2001) pp. 142-149
  31. Liu, M., Liu, D., Xu, S., Chen, Y., Experimental Study on Liquid Flow and Heat Transfer in Micro Square Pin-fin Heat Sink, Int. J. Heat Mass Transfer, 54 (2011) pp. 5602-5611
  32. Ahn, H. S., Kim, M. H., A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification, J. Heat Transfer, 134 (2012), pp. 1-13

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence