THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

STARTING RADIAL SUBDIFFUSION FROM A CENTRAL POINT THROUGH A DIVERGING MEDIUM (A SPHERE): HEAT-BALANCE INTEGRAL METHOD

ABSTRACT
The work presents an integral solution of the time-fractional subdiffusion equation as alternative approach to those employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer) well known from the heat diffusion and hydrodynamics. The profile satisfies the boundary conditions imposed at the boundary of the boundary layer that allows its coefficients to be expressed through the boundary layer depth as unique parameter describing the profile. The technique is demonstrated by a solution of a time fractional radial equation concerning anomalous diffusion from a central point source in a sphere.
KEYWORDS
PAPER SUBMITTED: 2010-08-05
PAPER REVISED: 2010-10-15
PAPER ACCEPTED: 2010-11-11
DOI REFERENCE: https://doi.org/10.2298/TSCI11S1005H
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2011, VOLUME 15, ISSUE Supplement 1, PAGES [S5 - S20]
REFERENCES
  1. Nigmatullin, R. R., The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry, Physica Status Solidi (B) Basic Research, 133 (1986), 1, pp. 425-430
  2. Li, Y., G. Farrher, G., Kimmich, R., Sub- and Superdiffusion Molecular Displacement Laws in Disordered Porous Media Probed by Nuclear Magnetic Resonance, Phys. Rev. E, 74 (2006), 6, article 066309
  3. Berkowitz, B., Scher, H., Silliman S.E., Anomalous Transport in Laboratory-Scale, Heterogeneous Porous Media, Water Resources Research, 36 (2000), 1, pp. 149-158
  4. Berkowitz, B., Scher, H., Exploring the Nature of Non-Fickian Transport in Laboratory Experiments, Advances in Water Resources, 32 (2009), 5, pp. 750-755
  5. Korabel, N., et al., Fractal Properties of Anomalous Diffusion in Intermittent Maps, Physical Review E, 75 (2007), 1539-3755/2007/75(3)/036213(14)
  6. Kosztołowicz, T., Subdiffusion in a System with a Thick Membrane, Journal of Membrane Science, 320 (2008), 1-2, pp. 492-499, doi:10.1016/j.memsci.2008.04.028
  7. Dokoumetzidis, A., Macheras, P., Fractional Kinetics in Drug Aabsorption and Disposition Processes, J. Pharmacokinetics and Pharmacodynamics, 36 (2009), 2, pp. 165-178
  8. Li, B, Wang, J., Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems , Physical Review Letters, 91 (2003), 4, pp. 044301-1- 4
  9. Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Physics Report, 39 (2000), 1, pp. 1-77
  10. Metzler, R., Klafter, J., The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics, Journal of Physics A, 37 (2004), 31, pp. 161-208.
  11. Trujillo, J., Fractional Models: Sub and Super-Diffusive, and Undifferentiable Solutions, in: Innovation in Engineering Computational Technology (eds. B. H. V. Topping, G. Montero, R. Montenegro), Saxe-Coburg Publ., Stirlingshire, UK, 2006, pp. 371-402
  12. Ardelean, I., Farrher, G., Kimmich, R., Effective Diffusion in Partially Filled Nanoscopic and Microscopic Pores, Journal of Optoelectronics and Advanced Materials, 9 (2007), 3, pp. 655-660
  13. Nakagawa, J., Sakamoto, K., Yamamoto, M., Overview to Mathematical Analysis for Fractional Diffusion Equations-New Mathematical Aspects Motivated by Industrial Collaboration, Journal of Math-for-Industry, Vol. 2 (2010A-10), pp. 99-108
  14. Narahari Achar, B. N., Hanneken, J. W., Fractional Radial Diffusion in a Cylinder, Journal of Molecular Liquids, 114 (2004), 1, pp. 147-151
  15. Djordjevi}, V. D., Atanackovi}, T. M., Similarity Solutions to Non-linear Heat Conduction and Burgers/Korteweg-deVries Fractional Equations, Journal of Computational and Applied Mathematics, 222 (2008), 2, pp. 701-714
  16. Langlands, T. A. M., Solution of a Modified Fractional Diffusion Equation , Physica A, 367 (2006), 15, pp. 136-144, doi:10.1016/j.physa.2005.12.012
  17. Pskhu, A. V., Solution of Boundary Value Problems for the Fractional Diffusion Equation by the Green Function Method, Differential Equations (Russia), 39 (2003), 10, pp. 1509-1513
  18. Luchko, Yu. F., Srivastava, H. M., The Exact Solution of Certain Differential Equations of Fractional Order by Using Operational Calculus, Computers and Math. Application, 29 (1995), 8, pp. 73-85
  19. Diethelm, K., et al., Algorithms for the Fractional Calculus: a Selection of Numerical Methods, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 6-8, pp. 743-773, doi:10.1016/j.cma.2004.06.006
  20. He, J.-H. Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media, Computer Methods in Applied Mechanics and Engineering, 167 (1998), 1-2, pp. 57-68
  21. Ghorbani, A., Toward a New Analytical Method for Solving Nonlinear Fractional Differential Equations, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 49-50, pp. 4173-4179. doi:10.1016/j.cma.2008.04.015
  22. Kurulay, M., Bayram, M., Approximate Analytical Solution for the Fractional Modified KdV by Differential Transform Method, Communications in Nonlinear Science and Numerical Simulation, 15 (2009), 7, pp. 1777-1782, doi:10.1016/j.cnsns.2009.07.014
  23. Al-Rabtah, A., Ertürk, V. S., Momani, S., Solutions of a Fractional Oscillator by Using Differential Transform Method, Computers and Mathematics with Applications, 59 (2009), 3, pp. 1356-1362, doi:10.1016/j.camwa.2009.06.036
  24. Goodman, T. R., The Heat Balance Integral and its Application to Problems Involving a Change of Phase, Transactions of ASME, 80 (1958), 1-2, pp. 335-342
  25. Goodman, T. R., Application of Integral Methods to Transient Nonlinear Heat Transfer (Eds. T. F. Irvine, J. P. Hartnett), Advances in Heat Transfer 1, Academic Press, San Diego, Cal., USA, 1964, pp. 51-122
  26. Hristov, J., Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model, Thermal Science, 14 (2010), 2, pp. 291-316
  27. Qi, H., Liu, J., Time-Fractional Radial Diffusion in Hollow Geometries, Meccanica, 45 (2010), 4, pp. 577-583, doi 10.1007/s11012-009-9275-2
  28. Povstenko, Yu., Time-Fractional Radial Diffusion in a Sphere , Nonlinear Dynamics, 53 (2008), 1-2, pp. 55-65, doi 10.1007/s11071-007-9295-1
  29. Ozdemir, N., Karadeniz, D., Fractional Diffusion-Wave Problem in Cylindrical Coordinates, Physics Letters A, 372 (2008), 38, pp. 5968-5972, doi:10.1016/j.physleta.2008.07.054
  30. Dworecki, K., et al., Evolution of Concentration Field in a Membrane System, Journal of Biochemical and Biophysical Methods, 62 (2005), 2, pp. 153-162, doi:10.1016/j.jbbm.2004.10.007
  31. Dworecki, K., Experimental Investigation of the Subdiffusion in a Membrane System, Physica A, 359 (2006), 1-4, pp. 24-32, doi:10.1016/j.physa.2005.04.031
  32. Schumer, R., et al., Fractal Mobile/Immobile Solute Transport, Water Resources Research, 39 (2003), 10, 1296, pp. 13-1-12
  33. Hristov, J., The Heat-Balance Integral Method by a Parabolic Profile with Unspecified Exponent: Analysis and Benchmark Exercises, Thermal Science, 13 (2009), 2, pp.22-48
  34. Hristov, J., Research Note on a Parabolic Heat-Balance Integral Method with Unspecified Exponent: an Entropy Generation Approach in Optimal Profile Determination, Thermal Science, 13 (2009), 2, pp. 49-
  35. Myers, T., Optimizing the Exponent in the Hear Balance and Refined Integral Methods, Int. Comm. Heat Mass Transfer, 44 (2008), 2, pp. 143-147, doi: 01016/j.icheatmasstransfer.2008.10.013
  36. Myers, T. G., Optimal Exponent Heat Balance and Refined Integral Methods Applied to Stefan Problem, Int. J. Heat Mass Transfer, 53 (2010), 5-6, pp. 1119-1127

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence