THERMAL SCIENCE

International Scientific Journal

SULFUR SELF-RETENTION IN ASH A GRAIN MODEL APPROACH

ABSTRACT
A developed overall model for sulfur self-retention in ash during coal particle combustion is presented in the paper. The total sulfur content in char, after devolatilization, is evaluated using a derived correlation. It is assumed that sulfur retention during char combustion occurs due to the reaction between SO2 and the active part of the Ca in the form of uniformly distributed CaO grains. Parametric analysis shows that the process is limited by solid diffusion through the product layer formed on the CaO grains and that the most important coal characteristics which influence sulfur self-retention are coal rank, content of sulfur forms, molar Ca/S ratio and particle radius. The model predicts relatively well the levels of the experimentally obtained values of SSR efficiencies, as well as the influence of temperature, particle size and the surrounding conditions.
KEYWORDS
PAPER SUBMITTED: 2002-10-11
PAPER REVISED: 2002-11-15
PAPER ACCEPTED: 2002-11-17
DOI REFERENCE: https://doi.org/10.2298/TSCI0202029M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2002, VOLUME 6, ISSUE 2, PAGES [29 - 46]
REFERENCES
  1. Puff, R., Kita, J.-C., Large, J.-F., Feugier, A., Self-Desulfuration of High Sulfur High Ash Provence Coal by the Cerchar F.B.C. Process., Proc. of the 1st Int. FBC and Applied Techn. Symp., Beijing, China, (1983), pp. 22
  2. Raymant, A. P., Sulfur Capture by Coal Ash and Freeboard Processes During Fluidized Bed Combustion, Proc. of the 10th Int. Conf. on Fluidized Bed Combustion, San Francisco, USA, 1 (1989), pp. 597
  3. Fuertes, A. B., Artos, V., Pis, J. J., Marban, G., Palacios, J. M., Fuel, 71 (1992), 507
  4. Yeh, A. T., Lee, Y. Y., Genetti, W. E., Sulfur Retention by Mineral Matter in Lignite During Fluidized Bed Combustion, Proc. of the 12th Int. Conf. on Fluidized Bed Combustion, Boston, USA, 1 (1987), pp. 345
  5. Manovic, V., Grubor, B., Jovancicevic, B., Chemical Industry, 53 (1999), 107 (in Serbian)
  6. Grubor, B., Manovic, V., Arsic, B., Influence of Combustion Conditions and Coal Characteristics on Self-Retention of SO2 by Ash Itself, Proc. of the Mediteraanean Combustion Symposium, MCS-99, Antala, Turkey, (1999), pp. 866
  7. Gray, V. R., Fuel, 65 (1986), 1618
  8. Sheng, C., Xu, M., Zhang, J., Xu, Y., Fuel Process. Technol., 64 (2000), 1
  9. Chen, C., Kojima, T., Fuel Process. Technol., 53 (1997), 49
  10. Uzun, D., Ozdogan, S., Fuel, 77 (1998), 1599
  11. Uzun, D., Ozdogan, S., Fuel, 76 (1997), 995
  12. Gryglewicz, G., Fuel, 74 (1995), 356
  13. Manovic, V., Grubor, B., Behaviour of Sulfur Forms During Devolatilization of Coal, Proc. of the 3rd Symp. of South-East European Countries (SEEC) on Fluidized Beds in Energy Production, Chemical and Process Engineering and Ecology, Sinaia, Romania, (2001), pp. 57
  14. Ilic, M., Grubor, B., Manovic, V., J. Serb. Chem. Soc. (submitted)
  15. Ilic, M., Oka, S., Grubor, B., Thermal Science, 2 (1998), 61
  16. Smith, I.W., Fuel, 57 (1978), 409
  17. Arthur, J., Trans. Faraday Soc., 47 (1951), 164
  18. Scholer, J., Ein Gesamtmodell fur Dampferzeugeranlangen mit Zirkulierender Wirbelschichtfeuerung, Ph. D. Thesis, Siegen University, Germany, (1992)
  19. Bhatia, S., Perlmutter, D., AIChE J., 26 (1980), 379
  20. Grubor, B., Manovic, V., Energy & Fuels, 16 (2002), 951
  21. Allen, D., Hayhurst, A. N., J. Chem. Soc., Faraday Trans., 92 (1996), 1227
  22. Anthony, E. J., Granatstein, D. L., Progr. in Energy and Comb. Sci., 27 (2001), 215
  23. Adanez, J., Gayan, P., de Diego, L. F., Chem. Eng. Sci., 51 (1996), 3077
  24. Li, X., Luo, Z., Ni, M., Cen, K., Chem. Eng. Sci., 50 (1995), 2235
  25. Marsh, D. W., Ulrichson, D. L., Chem. Eng. Sci., 40 (1985), 423
  26. Borgwardt, R. H., Bruce, K. R., Blake, J., Ind. Eng. Chem. Res., 26 (1987), 1993
  27. Hartman, M., Coughlin, R. W., AIChE J., 22 (1976), 490
  28. Lyngfelt, A., Leckner, B., Chem. Eng. Sci., 44 (1989), 207
  29. Hartman, M., Trnka, O., Chem. Eng. Sci., 35 (1980), 1189
  30. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., USA, 1980
  31. Gryglewicz, G., Fuel Process. Technol., 46 (1996), 217
  32. Bhatia, S. K., Perlmutter, D. D., AIChE J., 27 (1981), 226
  33. Diaz-Bosio, L. M., Squier, S. E., Pulsifer, A. H., Chem. Eng. Sci., 40 (1985), 319

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence