
Pankaj, T.: Creep Transition Stresses of a Thick Isotropic Spherical Shell by … 
THERMAL SCIENCE, Year 2011, Vol. 15, Suppl. 2, pp. S157-S165 S157 
 

CREEP  TRANSITION  STRESSES  OF  A  THICK  ISOTROPIC  

SPHERICAL  SHELL  BY  FINITESIMAL  DEFORMATION  UNDER 

STEADY-STATE  OF  TEMPERATURE  AND  INTERNAL  PRESSURE  

by 

Thakur PANKAJ 

Department of Mathematics, Indus International University Bathu, Una, 
Himachal Pradesh, India 

Original scientific paper 
UDC: 539.38:536.24 

DOI: 10.2298/TSCI101004083P 

Creep stresses for a thick isotropic spherical shell by finitesimal deformation 
under steady-state temperature and internal pressure have been derived by using 
Seth’s transition theory. Results are depicted graphically. It is seen that shell 
made of incompressible material require higher pressure to yield as compared to 
shell made of compressible material. For no thermal effects, the result are same 
as given by Gupta, Bhardwaj, Rana, Hulsurkar, Bhardwaj, and Bailey.  
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Introduction 

The problem of elastic-plastic and creep of spherical shells under internal pressure 

have been discussed by Bailey [1] and the effects of steady-state of temperature on the above 

problem has been discussed by Derrington [2]. These authors have analyses the problem after 

making some simplifying assumptions, like infinitesimal deformation and incompressibility 

of the material. Additionally, these works are based on the use of a yield condition and creep 

strain laws. Seth [3] transition theory does not  require these assumptions. It introduces the 

concept of generalized strain measure and then finds a solution of governing differential 

equation near the transition points. It has been shown by Hulsurkar [4], Seth [3, 5], Gupta et 
al. [6-16] that the asymptotic solution through the principal stress-difference give the creep 

stresses.  

Seth [5]
 
has defined the generalized principal strain measure as: 
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where n is the measure and 
A
ije  are the Almansi finite strain components. In Cartesian 

framework we can rapidly write down the generalized measure in terms of any other measure. 
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In terms of the principal Almansi strain components A ,jie the generalized principal strain 

components M
jie  are: 
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For uniaxial case it is given by: 
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where m is the irreversibility index and 0l and l are the initial and strained lengths, 

respectively. 

In this paper, the problem of creep stresses for a thick isotropic spherical shell by 

finitesimal deformation under steady-state of temperature and  internal pressure is 

investigated by using the concept of generalized strain measures and asymptotic solution 

through the principal stresses-difference. Results have been presented graphically and 

discussed. 

Governing equations 

Consider a spherical shell of internal and external radii a and b, respectively, 

subjected to internal to uniform internal pressure p and a steady-state temperature Q0 applied 

at the internal surface of the shell. Due to spherical symmetry of the structure, the components 

of displacements in spherical co-ordinates (r, f, z) are given by Seth [5]: 

 
 (1 ); 0; 0u r v w  (2.1) 

 
where b is the position function, depending  on r = (x

2
 + y
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 only. 

The generalized components of strain by finitesimal deformation from equation 

(1.2) are:  
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where b¢ = db/dr. 

The thermo-elastic stress-strain relations for isotropic material are given by Parkus 

[17] and Fung [18]: 
 

 1 2ij ij ij ijT I e  (2.3) 

 

where Tij are the stress components, l and m – the Lame’s constants, I1 = ekk is the first strain 

invariant, dij – the Kronecker’s delta, x = a(3l + 3m), a being the coefficient of thermal 

expansion, and Q – the temperature. Further, Q has to satisfy: 
 

 2 0  (2.4) 
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Using eq. (2.2) in eq. (2.3), one gets: 
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The equations of motion are all satisfied except: 
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The temperature satisfying Laplace eq. (2.4) with boundary condition: 
 

 
Q = Q0   at  r = a 

Q = 0     at  r = b 
(2.7) 

where Q0 is constant, is given by: 
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Using eqs. (2.5) and (2.8) in eq. (2.6), we get a non-linear differential equation in b as:   
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where rb¢ = bP (P is function of b and b is function of r) and c = 2m/(l + 2m) is the 

compressibility factor.

                                                                                                                                 For m = 1, which holds good for secondary stage of creep [9]. Equation (2.9) 

reduces to: 
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The transition points of b in eq. (2.9) are P ® 0, P ® –1, and P ® ±.The only 

critical point of interest is P ® –1 and P ® ±. The case of transition point P ® ± is 

discussed by Gupta et al. [6] which gives the plastic stresses. 

The boundary conditions are:  

 Trr = –p   at   r = a   and   Trr = 0   at   r = b (2.11) 

Asymptotic solution through P ® –1 

For creep stresses, we define the transition function R through the principal stress 

difference (see Seth [3, 5], Hulsurkar [4], Gupta et al. [6-16]) as: 
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Taking the logarithmic differentiating of eq. (3.1) with respect to b, one get: 
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(3.2) 

 
Substituting the value of dP/db from eq. (2.9) in eq. (3.2), one get:  
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(3.3) 

 
The asymptotic value of eq. (3.3) as, P –1, is: 
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Integrating of eqn. (3.4) gives: 
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where A0 is a constant of  integration and 2
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The asymptotic value of b as P  –1 is D/r; D being a constant, therefore eq. (3.5) 

becomes: 
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Using eq. (3.6) in eq. (2.6), and integrating, one gets: 
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where A1 is a constant of integration, which can be determine by boundary condition. 

Using boundary conditions (2.11) in eq. (3.7), one get: 
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Substituting the value of A0 and A1 in eqs. (3.6) and (3.7), one get: 
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Equation (3.7) corresponds to only one stage of creep. If all the three stages of creep 

to be taken in account, we shall add the incremental values [3, 4, 19] of Trr – Tff. Thus from 

eq. (3.7), we have: 
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where m and n having three sets of values each corresponding to one stage of creep and the 

transitional creep stresses given by: 
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Shell under steady-state of creep 

Transitional creep stresses for secondary state of creep are obtained by putting m = 1 

in eq. (3.8), one gets: 
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(4.1) 

 
where F1 = aE(3 – 2c) 1

0
nr /Y(n – 1)D

n
, a is the coefficient of thermal expansion, E – the 

Young’s modulus, and Y – the yield in tension. 

It is found that the value Trr – Tff  is maximum at r = a, therefore yielding of the 

shell starts at the internal surface and eq. (4.1) reduces to: 
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where Y1 is the yields stress and F1 = aE(3 – 2c) 1

0
na /Y(n – 1)D

n
. 

For incompressible material i. e. (c  0), eqs. (4.1) and (4.2) reduces to : 
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Figure 1. Yielding ratios Y1/p for various shell thickness ratios at different temperature for n = 2 
 

As a particular case, transitional creep stresses for a spherical shell under internal 

pressure are obtained by putting Q0 = 0 in eqs. (4.1) and (4.2), one gets: 
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Figure 2. Yielding ratios Y1/p for various shell thickness ratios at different temperature for n =3 

 

For incompressible material c  0, eq. (4.4) become: 
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Equations (4.4) and (4.5) are same as obtained by Bailey [1], Hulsurkar [4], Gupta, 

et al. [20], and Bhardwaj [21].  
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Results and discussion 

To show the effect of combined pressure and temperature on a shell, this problem 

has been solved by using Simpson’s rule for integration in eqs. (4.1), (4.2), and (4.3). For 

mild steel we take in various values as given by [22]; Y = 2.1·10
7
 kg/ms

2
, E = 2.1·10

10
 kg/ms

2
,
 

a = 2.93·10
–10

 K, and c = 0.0, 0.25, and 0.75, and Q0 = 0 K, 283.15 K, and 310.92 K. 

In figs. 1 and 2, curves have been drawn between yield Y1/p and different shell 

thickness ratios for n = 2 and 3, respectively. When heating effects are absent, it is seen that 

yielding of the thinner as well as thicker shells occurs generally at the same pressure, but with 

increasing temperature a thinner shell yields at higher pressure as compared to thicker shell. 

This yielding pressure goes on increasing with the increases in temperature and measure n. 

Shells made of incompressible material require higher pressure to yield as compared to shell 

made of compressible material. 

Conclusions 

It is seen that shell made of incompressible material require higher pressure to yield 

as compared to shell made of compressible material without thermal effects. The result are 

same as given by Gupta, Bhardwaj, Rana, and Hulsurkar [1, 3], Bhardwaj [4], Bailey [2], and 

Johnson et al. [23]. 
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Nomenclature 

A1 –  constants of integration, [–] 
a, b –  internal and external radii of the  
 –  circular cylinder, [m] 
c  –  compressibility factor, [–]   
p –  internal pressure, [Pa]  
Tij, eij –  stress strain rate tensors, [kgm-1s-2] 
 

 

, ,u v w  –  displacement components, [m] 
Y –  yield stress, [kgm–1s–2] 

Greek symbols 

 –  temperature, [K] 
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