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The present paper examines the failure criteria of layered composites with 
orthotropic properties in the homogeneous temperature field. The composite 
has modeled by two mechanically equivalent families of fibres. The paper 
formulates constitutive equations in terms of intrinsic “preferred” directions, 
which are defined by the orientation of fibers at any point of the composite. A 
uniformly heated, thermoelastic solid undergoes distortion as well as volume 
change because it experiences differential expansions in different directions. 
This effect is more complicated if, in addition of being anisotropic, the material 
is inhomogeneous, as in the case with laminated materials.  
In order to illustrate the influence of temperature on the failure of this group 
of materials constitutive equations are derived and adopted for use in failure 
criteria, without the influence of temperatures, and with the influence of 
increased temperature. 
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Introduction 

When an isotropic, thermo-elastic material is uniformly heated, it undergoes a 

uniform expansion without change of shape. By contrast, an anisotropic material has, in 

general, different thermal expansion coefficients in different directions, and so exhibits 

distortion as well as volume change when it is subjected to temperature change. This 

distortion effect is compounded when the material is inhomogeneous as well as anisotropic, 

because then the preferred direction for expansion vary with position, and this gives rise to 

further distortion. Laminated materials, which are extensively and increasingly used in 

advanced materials applications, are extreme cases of inhomogeneous materials. The 

anisotropic materials types to be considered here will be taken to have orthotropic symmetry 

                                                 

 Corresponding author; e-mail: dmilos@kg.ac.rs 

mailto:dmilos@kg.ac.rs


Milosavljević, D. I., et.al.: Failure Criteria of Fibre Reinforced Composites … 

S286                                                               THERMAL SCIENCE: Year 2010, Vol. 14, Suppl., pp. S285-S297 

 

built up by lamination with laminas reinforced with one family of fibres, which have 

transversely isotropic symmetry [1]. Depending on stacking sequences of lamination, one 

obtains different kinds of anisotropy. Perhaps the best known example is that of aligned fiber 

composite materials, but there are many other examples. A further condition will be taken is 

such that the degree of anisotropy is large [2]. This is in line with the interests here in high 

stiffness and high strength fibre composite materials as typified by carbon fibre, polymeric 

matrix systems.  

It is necessary to deduce the proper scale for the corresponding idealization of 

homogeneity for this class of materials failure problems. There are three obvious choices. The 

so called micromechanics level takes the individual fibres and the separate matrix phase in 

between them as the size scale for homogeneity. The next level up is the aligned fibre, lamina 

level, which then is much larger than the size of the individual filament or fibre. Finally, at yet 

a still much larger scale, the homogenization could be taken at the laminate level, involving 

the stacking of various laminas in various directions. It is the intermediate scale, the lamina 

level that is seen as having the proper balance between small scale details, but large enough 

scale to include all the possible failure mechanisms which could be operative.  

An example of the importance of the scale of the failure mode will be given later. 

Thus all idealizations to follow are taken at the aligned fibre, lamina scale of homogenization 

[3, 4]. This is the same scale as that at which the volume averaged elastic properties for fibre 

composites are normally rationalized. 

The main purpose here is to develop the highly anisotropic failure criterion for 

carbon-polymer systems [5], which is the companion piece to those of the well known cases 

given in [6] that include thermal effects.  

Basic governing equations and their formulation 

Here we develop a continuum theory, in which a material particle contains many 

atoms, and represents their average behaviour. We label each material particle by its 

coordinates  321 ,, xxx  in the reference configuration. At time t, the material particle 

 321 ,, xxx  has the displacement  txxxu ,,, 3211  in the x1-direction,  txxxu ,,, 3212  
in the 2x - 

direction, and  txxxu ,,, 3213  in the x3-Direction. A function of spatial coordinates is known as 

a field. The displacement field is a time-dependent vector field. If we place markers on a body, 

the motion of the markers visualizes the displacement field and its variation with time. With 

this definition, one can write the six linearized strain-displacement relations neatly as: 
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We adopt the convention that a repeated index implies a summation over 1, 2 and 3. 

Thus, 332211 kk . One also may write the stress tensor  txxxij ,,, 321 , which, 

because of symmetry, has sex independent components.  

When talking about homogeneity, one should think about at least two length scales: 

a large (macro) length scale, and a small (micro) length scale. A material is said to be 
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homogeneous if the macro-scale of interest is much larger than the scale of microstructures. A 

fibre-reinforced material is regarded as homogeneous when used as a component of an 

airplane, but should be thought of as heterogeneous when its fracture mechanism is of 

interest. Steel is usually thought of as a homogeneous material, but really contains numerous 

voids, particles and grains. 

A material is isotropic when response in one direction is the same as in any other 

direction.  Metals and ceramics in polycrystalline form are isotropic at macro-scale, even 

though their constituents—grains of single crystals—are anisotropic. Woods, single crystals, 

uniaxially fibre reinforced composites are anisotropic materials. 

Isotropic case 

According to Hooke's law, for an isotropic, homogeneous solid, only two 

independent constants are needed to describe its elastic property: Young‘s modulus E and 

Poisson‘s ratio . In addition, a thermal expansion coefficient  characterizes strains due to 

temperature change.  When temperature changes by refTTT  , where T current and Tref 

reference temperature, thermal expansion causes a strain T  in all three directions. The 

combination of multi-axial stresses and a temperature change causes uniform strains. The six 

stress-strain relation may be written as: 
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The Kronecker‘s delta symbol ij  stands for 0, when ji  , and for 1, when ji  . 

The inverse relation is: 
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Imagine a plane inside a material. The plane has the unit normal vector n, with three 

components n1, n2 and n3. The force per area on the plane is called the traction. The traction 

is a vector, with three components, which can be written collectively in the tensor form as  

 
jijij nt   (4) 

In an elastic material, the work done during loading is stored as recoverable strain 

energy in the solid. The work done to deform a specimen depends only on the state of strain at 

the end of the test. Based on these observations, the strain energy density of a solid can be 

defined as the work done per unit volume to deform a material from a stress free reference 

state to a loaded state. To write down an expression for the strain energy density, it is 

convenient to separate the strain into two parts:  
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where, for an isotropic solid:  
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represents the strain due to thermal expansion, known as thermal strain, and: 
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is the strain due to mechanical loading, known as elastic strain. Work is done on the specimen 

only during mechanical loading. It is straightforward to show that the strain energy density is: 
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Denote the distributed external force per unit volume by  txxxb j ,,, 321 . Using the 

summation convention, one can write the three equations of momentum balance as: 
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where ρ represent mass density of considered material. When the body is in equilibrium, we 

drop the acceleration terms from the above equations. 

Anisotropic case 

The simple isotropic model described in the preceding section is unable to describe 

the response of some materials accurately, even though the material may deform elastically. 

This is because some materials do have a characteristic orientation. For example, in a block of 

wood, the grain is oriented in a particular direction in the specimen. The block will be stiffer 

if it is loaded parallel to the grain than if it is loaded perpendicular to the grain. The same 

observation applies to fibre reinforced composite materials. Generally, single crystal 

specimens of a material will also be anisotropic. This is important when modeling stress 

effects in small structures such as microelectronic circuits. Even polycrystalline metals may 

be anisotropic, because a preferred texture may form in the specimen during manufacture. 

A more general stress – strain – temperature relation is needed to describe 

anisotropic solids. The most general linear stress – strain – temperature relation has the form: 

 
  TcTc  ijklijklklkl

T

ijklij   (10) 

where T
ijklc  is fourth order tensor at constant temperature, known as the elastic stiffness tensor, 

lkkl αα   is the thermal expansion coefficient tensor, and jiij ββ   are thermal modules.   

Energy equation may be written as: 

 
        ji,0ji,ij00eijij , uuTTTCTK     (11) 
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where ijK  are the thermal conductivities, eC  is the specific heat at constant strain, 0  is 

thermal relaxation time, ),,,( 321 txxxT  is current temperature, and superimposed dot is 

differentiation with respect to time.  

At first sight it appears that the stiffness tensor has 81 components. However, it must 

satisfy the Green symmetry conditions T
jikl

T
ijlk

T
klij

T
ijkl cccc  . This reduces the number of 

material constants to 21. We can also write the constitutive equations in another form. The 

state of strain is specified by the six components labeled as 

126135234333222111  , , , , ,  eeeeee . It may be noted that the first and last 

indices, ―i‖ and ―j‖, in cij are related to first two and last two indices, ―ij‖ and ―kl‖, in ijklc by 

the following rule 1→11, 2→22, 3→33, 4→23, 5→13, 6→12. 

The six strain components can vary independently. The elastic energy per unit 

volume is a function of all six strain components,  654321 ,,,,, eeeeeeW . Each stress 

component 654321 ,,,,, 
 
is the differential coefficient of the energy density function: 
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If the function  654321 ,,,,, eeeeeeW  is known, we can determine the six stress-strain 

relations by the differentiations. Consequently, by introducing the energy density function, we 

only need to specify one function, rather than six functions, to determine the stress-strain 

relations. 

The above considerations apply to solids with linear or non-linear stress-strain 

relations. We now examine linear elastic solids. For the stress components to be linear in the 

strain components, the energy density function must be a quadratic form of the strain 

components: 

 
6...,,2,1,,

2

1
jiij  jieecw  (13) 

The matrix ijc  is symmetric, with 21 independent elements. Consequently, 21 

constants are needed to specify the elasticity of a linear anisotropic elastic solid. Because the 

elastic energy is positive for any nonzero strain state, the matrix ijc  is positive definite. 

Recall that each stress component is the differential coefficient of the energy density 

function, ii / ewσ  . The stress relation becomes: 

 
6...,,2,1,,jiji  jiecσ  (14) 

The physical significance of the constants cij  is now evident. For example, when the 

solid is under a uniaxial strain state, 0   ,0 654321  eeeeee , the six stress 

components on the solid are ,..., 12121111 ecσecσ  The matrix ijc is known as the stiffness 

matrix.  
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Ferroelastic phase transition 

This part goes beyond linear elasticity. Suppose we have the following experimental 

observations. A crystal has a rectangular symmetry at a high temperature. When the 

temperature drops below a critical value, Tc, the crystal undergoes a phase transition. The 

crystal at a low temperature acquires a spontaneous strain in shear. Because of the symmetry, 

the shear strain can go both directions. We model this crystal with a free energy density: 

 
    42

c
4

1

2

1
,  BTTATW   (15) 

where A and B are positive constants, and γ is the strain. Due to symmetry, the crystal is 

equally likely to shear in two directions, so that we keep the even powers in the strain  . 

When cTT  , the coefficient of the 2γ  term is positive, so that the crystal behaves 

like usual elastic solid, with the shear modulus  cTTA  . The 4γ  term is unnecessary to 

describe the behavior of the crystal. 

When cTT  , the coefficient of the 2γ  term is negative, and the energy is no longer 

minimal at 0γ . Instead, the energy is minimal at two nonzero strains, known as the 

spontaneous strains, sγ . In this case, the 4γ  term will ensure that energy goes up again when 

the strain is large enough. 

The stress-strain relation is: 
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Setting 0 , we find the spontaneous strains: 

 
  BTTAγ /cs   (17) 

Because the material is non-linear, the shear modulus is no longer a constant, and is 

given by: 
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At the spontaneous strain, the shear modulus is given by: 

 
 TTAμ  c2  (19) 

Constitutive relations of fibre reinforced materials 

Consideration in elastic range is used to model materials that exhibit non-linear, but 

reversible, stress strain behavior even at small strains. Its most common application is in the 
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so-called ―deformation theory of plasticity‖, which is a crude approximation of the behavior 

of metals loaded beyond the elastic limit. 

Materials, we are going to model has the properties described in what is follow. The 

solid has a preferred shape, the specimen deforms reversibly, the strain in the specimen 

depends only on the stress applied to it doesn‘t depend on the rate of loading, or the history of 

loading, the stress is a non-linear function of strain, even when the strains are small. 

When we develop constitutive equations for non-linear elastic materials, it is usually 

best to find an equation for the strain energy density of the material as a function of the strain, 

instead of trying to write down stress-strain laws directly. This has several advantages, such 

as that we can work with a scalar function and the existence of a strain energy density 

guarantees that deformations of the material are perfectly reversible.  

If the material is isotropic, the strain energy density can only be a function strain 

measures that do not depend on the direction of loading with respect to the material. One can 

show that this means that the strain energy can only be a function of invariants of the strain 

tensor that is to say, combinations of strain components that have the same value in any basis. 

The strain tensor always has three independent invariants, which could be the three principal 

strains, for example. In practice it is usually more convenient to use the three fundamental 

scalar invariants. However, if material has anisotropic characteristics as fibre reinforced 

materials, it is necessary to construct strain energy density by consideration of specific 

preferred directions. 

When we construct strain energy density function it is easy to obtain fourth order 

elastic stiffness tensor cijkl, which has different values depending on thermal considerations. 

This difference arises for all materials between adiabatic elastic constants, which apply to 

rapid or dynamic loading, and isothermal constants, which apply to very slow or static 

loading. Using a superscript ε to denote constant entropy for adiabatic stiffness, and 

superscript T to denote constant temperature for isothermal stiffness the difference between 

two is:  

 V

klijT

ijkl

ε

ijkl
C

Tλλ
cc


  (20) 

where ijλ  and klλ  are temperature coefficients of stress at constant strain, and VC  is the heat 

capacity per unit volume at constant volume. Most of the differences are small as little if any 

greater than combined deviations due to errors of measurements and variability in the 

material. In some cases, particularly when comparing static and dynamic values of elastic 

constants, it may be desirable to take difference into account, but it is not necessary to do so. 

Classical thermostatic relations connecting equilibrium states have a firm position in 

the theory of solids. It seems most appropriate [7] to state them as fundamental constitutive 

assumptions, because their validity may reach beyond any other special set of assumptions 

one may use to derive them. Proceeding directly we make the following three constitutive 

assumptions for homogeneous solids: 

- If the strain ije
 
and internal energy density W are maintained constant in time and space 

for long enough time, the solid approaches a static equilibrium state; 
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- The entropy per unit reference volume S in the static equilibrium state is a function of W, 

ije , and preferred direction, and can be inverted to obtain W as a function: 

 
 SaeWW ,, kij  (21) 

- The static equilibrium temperature T and static equilibrium Piola-Kirchhoff stress ij  

satisfy the classical thermostatic relations:  

 eS

W
T 












 and 

T
e

W




















ij

ij  (22) 

and subscripts e and T, again, denote conditions under constant strain and constant 

temperature, respectively.    

One family of fibres 

Composite material is considered as continuum made of matrix material reinforced 

by one family of stiff fibres, which has preferred direction along the fibre described with the 

unit vectors field a , with components ia . That is transversely isotropic material and to 

determine the form of stiffness tensor we first note that, for given deformation, strain energy 

W has to be function of ije , ka  and temperature ΔT in form given in eg. (21). 

If the only anisotropic properties of the material are those which arise from the 

presence of the fibres, then W is an isotropic invariant of ije , and ka . Sense of a  is not 

significant and, therefore, W must be an even function of a , and a  may be represented by 

dyadic product aa , which is second order tensor with Cartesian components lkaa . List of 

matrix products whose traces represents invariants on which W depends is, following [3, 4, 8 

and 9], given as: 
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Having in minds that a  is the unit vector it is easy to show validity of relations: 
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which reduce set of invariants to: 

 
aeaaeaeee  232 ,,,, trtrtr  (25) 
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The most general quadratic function in e which can be formed from above list is: 
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where ,,,, TL  and β are elastic constants at certain level of temperature, which 

leads to stress strain relation in form: 
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This equation is equivalent to the conventional form of the constitutive equation for 

a transversely isotropic linearly elastic solid, but here explicit dependence on fibre direction is 

exposed.  

The stiffness tensor can be calculated as: 
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and it is clear direct dependence on preferred direction. 

Two families of fibres 

A material reinforced by two families of mechanically equivalent families of fibres, 

but with no other preferred directions, is locally orthotropic with respect to the plane of the 

fibres and the two planes which bisect the fibres and are orthogonal to the plane of the fibres. 

List of matrix products whose traces represents invariants on which W depends is, following 

[3, 4, 8 and 9], given as: 
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and, with substantial amount of algebra [3], can be proven identity which allows that one 

invariant, say ,φcos )(2 bea  can be omitted from above list. Thus the most general 

quadratic form for W is: 
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where 71,...,, , are elastic constants at certain level of temperature, which leads to 

stress strain relation in form: 
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  (31) 

Again constitutive relation is constructed with 9 material constants, which is in 

agreement with conventional form of the constitutive equation for a orthotropic linearly 

elastic solid, but here explicit dependence on two fibre directions is exposed. 

Material constants introduced in this section are derived under assumption that 

temperature is constant. Thus, they can be regarded as function of temperature, and at various 

levels of temperature, under quasi static conditions, one may experimentally obtain set of 

material constants at each level. 

Failure criteria consideration 

Despite of widespread use of fibre reinforced composite materials, an outstanding 

problem is lack of experimentally validated theory of failure. For reason of simplicity, the 

most common approach is to use of limit theories such as maximum stress or maximum 

strain. These approaches are not appropriate because do not take into account interactive 

effects that have been observed for polymer based composites. A popular theory is the Tsai–

Wu tensor polynomial theory. This strength criterion is a simplified version of the scalar 

relation involving expansion of the stress tensor. Polynomial strength criteria do provide for 

interactive stress effects and until now the interactive strength terms could only be determined 

by combined stress tests. The two interactive strength terms in the Tsai–Wu criterion can be 

derived from the commonly measured uniaxial strengths.  

The Tsai–Wu failure criterion [5] is based on the expansion of the stress tensor, 

truncated at second order terms to give: 
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,6...,,2,1,,1...kjiijkjiijii  jiFFF   (32) 

For this relation Fi, Fij and Fijk are the strength parameters and the contracted 

notation is used. When the theory is applied to a two-directional composite laminate, which is 

assumed to has two mechanically equivalent fibres, with the axes are along bisectors of the 

fibres and perpendicular to plane of fibres, the expanded form of (32), with terms higher than 

quadratic in stress discarded,  becomes 
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where: 
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For the common case of plane stress, (33) is reduced to: 
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The strength terms Fi and Fij are determined directly from the uniaxial strengths of 

the lamina using 
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where, XT is the longitudinal tensile strength; XC is the longitudinal compressive strength. YT 

is the transverse tensile strength; YC is the transverse compressive strength. SL is the 

longitudinal shear strength and ST is the transverse shear strength. 

The remaining parameter F12 is the interactive strength terms. It must be determined 

experimentally using combined stress tests in order to apply the theory to either the full three-

dimensional or the reduced plane stress cases. Very few materials have been characterized for 

this interactive parameter. Since combined stress tests are neither common nor 

straightforward, there has been a lack of data from which to calculate interactive term. In the 

absence of experimental results to calculate this interactive parameter, users of the theory 

have had to resort to making estimates for its value without a rational basis.  

In the original description of the theory, Tsai and Wu placed significant emphasis on 

maintaining closed, ellipsoidal failure envelopes for all stress states. To avoid open-ended 

failure surfaces, ‗‗stability‘‘ conditions were proposed as:  
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The failure envelope for this theory is in general an ellipse in 
21    space. The 

advantage of this theory is that there is interaction between the stress components and the 

theory does distinguish between the tensile and compressive strengths. A major disadvantage 

of this theory is that it is not simple to use. 



Milosavljević, D. I., et.al.: Failure Criteria of Fibre Reinforced Composites … 

S296                                                               THERMAL SCIENCE: Year 2010, Vol. 14, Suppl., pp. S285-S297 

 

Tsai-Hill failure theory is used to model damage in brittle laminated fibre – 

composite. The Tsai-Hill criterion assumes that a plane stress state exists in the solid. In this 

theory, failure is assumed to occur whenever the distortional yield energy equals or exceeds a 

certain value related to the strength of the lamina. In this theory, there is no distinction 

between the tensile and compressive strengths. Therefore, The Tsai-Hill failure theory is 

written mathematically for the lamina as follows:  
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where FFF
1221 ,,   are strengths of the lamina in longitudinal and transverse directions, and 

shear strength, respectively. 

There exists many others tensor polynomial criteria, which are extension of criteria 

used in isotropic materials.  

Concluding remarks  

Here we are developed constitutive relations for composite materials reinforced with 

one and two families of fibres. The constitutive relations are well known; the usual method of 

deriving them is to select appropriate coordinate system, and examine the restrictions on the 

strain energy functions which results from the requirements of invariance under rotations 

about coordinate axes. Here we proceed in a rather different, though equivalent way. The 

main reason for this is that, because fibre direction is dependent on position, it is convenient 

to have formulation which does not depend on particular choice of coordinate system. Such 

constitutive relations seem to be more satisfactory for use in failure criterions for anisotropic 

laminate structures. That make easier to set experiment for testing composite for strength. 

Although this is reasonably well satisfied for the various classes of isotropic materials, it is 

not usually available for evaluating failure criteria for anisotropic fibre composite materials. 

The latter are extremely difficult to test, at least partially because of the extreme anisotropy. 

The method of polynomial invariants also gives failure criteria for the more general cases of 

orthotropic laminates. It must be added, however, that definitive and determining 

experimental data are not yet available.  
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